Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
J Biomed Opt ; 29(8): 086005, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39165857

ABSTRACT

Significance: Pathologies within the tympanic membrane (TM) and middle ear (ME) can lead to hearing loss. Imaging tools available in the hearing clinic for diagnosis and management are limited to visual inspection using the classic otoscope. The otoscopic view is limited to the surface of the TM, especially in diseased ears where the TM is opaque. An integrated optical coherence tomography (OCT) otoscope can provide images of the interior of the TM and ME space as well as an otoscope image. This enables the clinicians to correlate the standard otoscopic view with OCT and then use the new information to improve the diagnostic accuracy and management. Aim: We aim to develop an OCT otoscope that can easily be used in the hearing clinic and demonstrate the system in the hearing clinic, identifying relevant image features of various pathologies not apparent in the standard otoscopic view. Approach: We developed a portable OCT otoscope device featuring an improved field of view and form-factor that can be operated solely by the clinician using an integrated foot pedal to control image acquisition. The device was used to image patients at a hearing clinic. Results: The field of view of the imaging system was improved to a 7.4 mm diameter, with lateral and axial resolutions of 38 µ m and 33.4 µ m , respectively. We developed algorithms to resample the images in Cartesian coordinates after collection in spherical polar coordinates and correct the image aberration. We imaged over 100 patients in the hearing clinic at USC Keck Hospital. Here, we identify some of the pathological features evident in the OCT images and highlight cases in which the OCT image provided clinically relevant information that was not available from traditional otoscopic imaging. Conclusions: The developed OCT otoscope can readily fit into the hearing clinic workflow and provide new relevant information for diagnosing and managing TM and ME disease.


Subject(s)
Ear, Middle , Equipment Design , Otoscopes , Tomography, Optical Coherence , Tympanic Membrane , Tomography, Optical Coherence/methods , Tomography, Optical Coherence/instrumentation , Humans , Tympanic Membrane/diagnostic imaging , Tympanic Membrane/pathology , Ear, Middle/diagnostic imaging , Ear, Middle/pathology , Ear Diseases/diagnostic imaging , Otoscopy/methods
2.
Foods ; 13(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39123560

ABSTRACT

Arabinoxylans (AXs) are non-starch polysaccharides with complex structures naturally occurring in grains (i.e., barley, corn, and others), providing many health benefits, especially as prebiotics. AXs can be classified as water-extractable (WEAX) and water-unextractable (WUAX) based on their solubility, with properties influenced by grain sources and extraction methods. Numerous studies show that AXs exert an important health impact, including glucose and lipid metabolism regulation and immune system enhancement, which is induced by the interactions between AXs and the gut microbiota. Recent research underscores the dependence of AX physiological effects on structure, advocating for a deeper understanding of structure-activity relationships. While systematic studies on WEAX are prevalent, knowledge gaps persist regarding WUAX, despite its higher grain abundance. Thus, this review reports recent data on WUAX structural properties (chemical structure, branching, and MW) in cereals under different treatments. It discusses WUAX applications in baking and the benefits deriving from gut fermentation.

3.
BMC Plant Biol ; 24(1): 807, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39187785

ABSTRACT

Cadmium (Cd) is a biologically non-essential heavy metal, a major soil pollutant, and extremely harmful to plants. The phytohormone methyl jasmonate (MeJA) plays an important role in plant heavy-metal resistance. However, the understanding of the effects of MeJA supply level on alleviating Cd toxicity in plants is limited. Here, we investigated how MeJA regulated the development of physiological processes and cell wall modification in Cosmos bipinnatus. We found that low concentrations of MeJA increased the dry weight of seedlings under 120 µM Cd stress by reducing the transport of Cd from roots to shoots. Moreover, a threshold concentration of exogenous MeJA increased the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in plant roots, the concentration of Cd in the root cell wall, and the contents of pectin and hemicellulose 1 polysaccharides, through converting Cd into pectin-bound forms. These results suggested that MeJA mitigated Cd toxicity by modulating root cell wall polysaccharide and functional group composition, especially through pectin polysaccharides binding to Cd, with effects on Cd transport capacity, specific chemical forms of Cd, and homeostatic antioxidant systems in C. bipinnatus.


Subject(s)
Acetates , Cadmium , Cyclopentanes , Oxylipins , Plant Growth Regulators , Oxylipins/metabolism , Cyclopentanes/metabolism , Acetates/pharmacology , Cadmium/toxicity , Plant Growth Regulators/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Soil Pollutants/toxicity , Cell Wall/metabolism , Cell Wall/drug effects , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Antioxidants/metabolism , Superoxide Dismutase/metabolism
4.
Stem Cells ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39169713

ABSTRACT

Human dental pulp stem cells (HDPSCs) showed an age-dependent decline in proliferation and differentiation capacity. Decline in proliferation and differentiation capacity affect the dental stromal tissue homeostasis and impair the regenerative capability of HDPSCs. However, which age-correlated proteins regulate the senescence of HDPSCs remain unknown. Our study investigated the proteomic characteristics of HDPSCs isolated from subjects of different ages and explored the molecular mechanism of age-related changes in HDPSCs. Our study showed that the proliferation and osteogenic differentiation of HDPSCs were decreased, while the expression of aging-related genes (p21, p53) and proportion of senescence-associated ß-galactosidase (SA-ß-gal)-positive cells were increased with aging. The bioinformatic analysis identified that significant proteins positively correlated with age were enriched in response to the mTOR signaling pathway (ILK, MAPK3, mTOR, STAT1 and STAT3). We demonstrated that OSU-T315, an inhibitor of integrin-linked kinase (ILK), rejuvenated aged HDPSCs, similar to rapamycin (an inhibitor of mTOR). Treatment with OSU-T315 decreased the expression of aging-related genes (p21, p53) and proportion of SA-ß-gal-positive cells in HDPSCs isolated from old (O-HDPSCs). Additionally, OSU-T315 promoted the osteoblastic differentiation capacity of O-HDPSCs in vitro and bone regeneration of O-HDPSCs in rat calvarial bone defects model. Our study indicated that the proliferation and osteoblastic differentiation of HDPSCs were impaired with aging. Notably, the ILK/AKT/mTOR/STAT1 signaling pathway may be a major factor in the regulation of HDPSC senescence, which help to provide interventions for HDPSC senescence.

5.
Huan Jing Ke Xue ; 45(7): 4137-4151, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022961

ABSTRACT

Ecosystem service assessment and prediction play a crucial role in sustainable regional development and resource management. Liaoning Province, as a typical representative of Northeast China, faces rapid development challenges such as urbanization, industrialization, and agricultural modernization. At the same time, there is an urgent need for a deeper understanding of the evolution trends of its ecosystems and their impact on ecosystem services. This study employed the InVEST-Markov-PLUS model to conduct simulated research on the assessment of past and future ecosystem services and multi-scenario predictions in Liaoning Province. Based on the land-use changes in Liaoning Province from 2000 to 2020, the InVEST model was used to evaluate the spatiotemporal variations in carbon storage, soil conservation, and water yield in the ecosystem services from 2000 to 2020. Additionally, the equivalent factor method was employed to calculate the value of ecosystem services in Liaoning Province during the same period. Furthermore, by integrating the PLUS and Markov models with the actual conditions of Liaoning Province, four land-use development scenarios for 2030 were constructed, including natural development, economic priority, ecological protection, and cropland protection. The land-use distribution and the quantities and values of ecosystem services under these scenarios were simulated. The study revealed the following findings: ① From 2000 to 2020, carbon storage and soil retention in Liaoning Province showed an overall increasing trend, whereas water yield exhibited a fluctuating decrease trend initially, followed by an increase and then another decrease. ② Carbon storage and soil retention in Liaoning Province showed higher values in the eastern mountainous areas and western hilly regions, with lower values in the central region. Water yield showed a decreasing trend from east to west. ③ The value of ecosystem services increased from 547.94 billion yuan to 565.53 billion yuan, with a total increase of 17.58 billion yuan during the study period. All four types of services showed an increase, with cultural services experiencing the fastest change. ④ In 2030, carbon storage and soil retention in Liaoning Province decreased in all scenarios except for in the ecological protection scenario. Water yield increased only in the cropland protection scenario, whereas it decreased in the other three scenarios. The value of ecosystem services in the study area increased in all scenarios except for in the economic priority scenario.

6.
Behav Sci (Basel) ; 14(7)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39062444

ABSTRACT

In China, the integration of livestreaming into restaurant marketing has transitioned from mere entertainment to a vital business tool. This study examines the influence of social sharing value (SSV) on customer attitudes and behavioral intentions within the context of restaurant livestreams, applying the stimulus-organism-behavior-consequences (SOBC) model. Analyzing data from 1139 livestream viewers using partial least squares-path modeling (PLS-PM), the results reveal that SSV significantly enhances viewers' trust, satisfaction, word of mouth (WOM), and behavioral intentions. Trust was shown to elevate satisfaction, which, in turn, positively impacts WOM and purchase intentions. Among the SSV's components, brand intimacy emerged as highly influential. Notably, behavioral intention was found to significantly influence WOM activities, underscoring the critical role of proactive customer behaviors in promoting the brand. This study extends social exchange theory by quantifying relationship quality and adapting it to digital consumer interactions in the restaurant industry. The findings highlight the importance of cultivating SSV to bolster customer trust and satisfaction, thereby enhancing loyalty and advocacy. Effective engagement through livestreaming can amplify brand intimacy, establishing it as an indispensable strategy for maintaining competitiveness in the restaurant sector.

7.
Cancer Cell Int ; 24(1): 252, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030557

ABSTRACT

Dysregulated gene expression and imbalance of transcriptional regulation are typical features of cancer. RNA always plays a key role in these processes. Human transcripts contain many RNAs without long open reading frames (ORF, > 100 aa) and that are more than 200 bp in length. They are usually regarded as long non-coding RNA (lncRNA) which play an important role in cancer regulation, including chromatin remodeling, transcriptional regulation, translational regulation and as miRNA sponges. With the advancement of ribosome profiling and sequencing technologies, increasing research evidence revealed that some ORFs in lncRNA can also encode peptides and participate in the regulation of multiple organ tumors, which undoubtedly opens a new chapter in the field of lncRNA and oncology research. In this review, we discuss the biological function of lncRNA in tumors, the current methods to evaluate their coding potential and the role of functional small peptides encoded by lncRNA in cancers. Investigating the small peptides encoded by lncRNA and understanding the regulatory mechanisms of these functional peptides may contribute to a deeper understanding of cancer and the development of new targeted anticancer therapies.

8.
Parasit Vectors ; 17(1): 284, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956725

ABSTRACT

BACKGROUND: Toxoplasma gondii infection affects a significant portion of the global population, leading to severe toxoplasmosis and, in immunocompromised patients, even death. During T. gondii infection, disruption of gut microbiota further exacerbates the damage to intestinal and brain barriers. Therefore, identifying imbalanced probiotics during infection and restoring their equilibrium can regulate the balance of gut microbiota metabolites, thereby alleviating tissue damage. METHODS: Vimentin gene knockout (vim-/-) mice were employed as an immunocompromised model to evaluate the influence of host immune responses on gut microbiota balance during T. gondii infection. Behavioral experiments were performed to assess changes in cognitive levels and depressive tendencies between chronically infected vim-/- and wild-type (WT) mice. Fecal samples were subjected to 16S ribosomal RNA (rRNA) sequencing, and serum metabolites were analyzed to identify potential gut probiotics and their metabolites for the treatment of T. gondii infection. RESULTS: Compared to the immunocompetent WT sv129 mice, the immunocompromised mice exhibited lower levels of neuronal apoptosis and fewer neurobehavioral abnormalities during chronic infection. 16S rRNA sequencing revealed a significant decrease in the abundance of probiotics, including several species of Lactobacillus, in WT mice. Restoring this balance through the administration of Lactobacillus murinus and Lactobacillus gasseri significantly suppressed the T. gondii burden in the intestine, liver, and brain. Moreover, transplantation of these two Lactobacillus spp. significantly improved intestinal barrier damage and alleviated inflammation and neuronal apoptosis in the central nervous system. Metabolite detection studies revealed that the levels of various Lactobacillus-related metabolites, including indole-3-lactic acid (ILA) in serum, decreased significantly after T. gondii infection. We confirmed that L. gasseri secreted much more ILA than L. murinus. Notably, ILA can activate the aromatic hydrocarbon receptor signaling pathway in intestinal epithelial cells, promoting the activation of CD8+ T cells and the secretion of interferon-gamma. CONCLUSION: Our study revealed that host immune responses against T. gondii infection severely disrupted the balance of gut microbiota, resulting in intestinal and brain damage. Lactobacillus spp. play a crucial role in immune regulation, and the metabolite ILA is a promising therapeutic compound for efficient and safe treatment of T. gondii infection.


Subject(s)
Brain Injuries , Gastrointestinal Microbiome , Mice, Knockout , Toxoplasma , Animals , Mice , Toxoplasma/immunology , Brain Injuries/immunology , Probiotics/administration & dosage , Brain/immunology , Lactobacillus , Disease Models, Animal , Immunocompromised Host , Toxoplasmosis/immunology , RNA, Ribosomal, 16S/genetics , Male , Intestines/immunology
9.
Materials (Basel) ; 17(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38998396

ABSTRACT

The CoCrFeMnNi high-entropy alloy is commonly used for vascular stents due to its excellent mechanical support and ductility. However, as high-entropy alloy stents can cause inflammation in the blood vessels, leading to their re-narrowing, drug-eluting stents have been developed. These stents have nanopores on their surfaces that can carry drug particles to inhibit inflammation and effectively prevent re-narrowing of the blood vessels. To optimize the mechanical properties and drug-carrying capacity of high-entropy alloy stents, a high-entropy alloy system with different wide and deep square-shaped nanopore distributions is created using molecular dynamics. The mechanical characteristics and dislocation evolution mechanism of different nanopore high-entropy alloy systems under tensile stress were studied. The results showed that the CoCrFeMnNi high-entropy alloy with a rational nanopore distribution can effectively maintain the mechanical support required for a vascular stent. This research provides a new direction for the manufacturing process of nanopores on the surfaces of high-entropy alloy stents.

10.
J Assist Reprod Genet ; 41(8): 2145-2161, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38902567

ABSTRACT

PURPOSE: The objective of this study was to discern ferroptosis-related genes (FRGs) linked to non-obstructive azoospermia and investigate the associated molecular mechanisms. METHOD: A dataset related to azoospermia was retrieved from the Gene Expression Omnibus database, and FRGs were sourced from GeneCards. Ferroptosis-related differentially expressed genes (FRDEGs) were discerned. Subsequently, these genes underwent analyses encompassing Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, as well as protein-protein interaction (PPI) networks and assessments of functional similarity. Following the identification of hub genes, an exploration of immune infiltration, single-cell expression, diagnostic utility, and interactions involving hub genes, RNA-binding proteins (RBPs), transcription factors (TFs), microRNAs (miRNAs), and drugs was conducted. RESULTS: A total of 35 differentially expressed FRGs were discerned. These genes demonstrated enrichment in functions and pathways associated with ferroptosis. From the PPI network, eight hub genes were selected. Functional similarity analysis highlighted the potential pivotal roles of HMOX1 and GPX4 in azoospermia. Analysis of immune cell infiltration indicated a significant decrease in activated dendritic cells in the azoospermia group, with notable correlations between hub genes, particularly SAT1 and HMGCR, and immune cell infiltration. Unique expression patterns of hub genes across various cell types in the human testis were observed, with GPX4 prominently enriched in spermatid/sperm. Eight hub genes exhibited robust diagnostic value (AUC > 0.75). Lastly, a comprehensive hub gene-miRNA-TF-RBP-drug network was constructed. CONCLUSION: In summary, our investigation unveiled eight FRDEGs associated with azoospermia, which hold potential as biomarkers for the diagnosis and treatment of azoospermia.


Subject(s)
Azoospermia , Computational Biology , Ferroptosis , Gene Regulatory Networks , Protein Interaction Maps , Humans , Azoospermia/genetics , Azoospermia/pathology , Male , Ferroptosis/genetics , Computational Biology/methods , Protein Interaction Maps/genetics , Gene Regulatory Networks/genetics , MicroRNAs/genetics , Gene Expression Profiling , Gene Ontology , Transcription Factors/genetics , Gene Expression Regulation/genetics
11.
Plant Cell Environ ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884189

ABSTRACT

The identification of new genes involved in regulating cold tolerance in rice is urgent because low temperatures repress plant growth and reduce yields. Cold tolerance is controlled by multiple loci and involves a complex regulatory network. Here, we show that rice jacalin-related lectin (OsJRL) modulates cold tolerance in rice. The loss of OsJRL gene functions increased phenylalanine metabolism and flavonoid biosynthesis under cold stress. The OsJRL knock-out (KO) lines had higher phenylalanine ammonia-lyase (PAL) activity and greater flavonoid accumulation than the wild-type rice, Nipponbare (NIP), under cold stress. The leaves had lower levels of reactive oxygen species (ROS) and showed significantly enhanced cold tolerance compared to NIP. In contrast, the OsJRL overexpression (OE) lines had higher levels of ROS accumulation and showed lower cold tolerance than NIP. Additionally, the OsJRL KO lines accumulated more abscisic acid (ABA) and jasmonic acid (JA) under cold stress than NIP. The OsJRL OE lines showed increased sensitivity to ABA compared to NIP. We conclude that OsJRL negatively regulates the cold tolerance of rice via modulation of phenylalanine metabolism and flavonoid biosynthesis.

12.
Int J Biol Macromol ; 273(Pt 2): 132867, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838892

ABSTRACT

Mounting an active immune response is energy intensive and demands the reallocation of nutrients to maintain the body's resistance and tolerance against infections. Central to this metabolic adaptation is Glucose-6-phosphate dehydrogenase (G6PDH), a housekeeping enzyme involve in pentose phosphate pathway (PPP). PPP play an essential role in generating ribose, which is critical for nicotinamide adenine dinucleotide phosphate (NADPH). It is vital for physiological and cellular processes such as generating nucleotides, fatty acids and reducing oxidative stress. The G6PDH is extremely conserved enzyme across species in PP shunt. The deficiency of enzymes leads to serious consequences on organism, particularly on adaptation and development. Acute deficiency can lead to impaired cell development, halted embryonic growth, reduce sensitivity to insulin, hypertension and increase inflammation. Historically, research focusing on G6PDH and PPP have primarily targeted diseases on mammalian. However, our review has investigated the unique functions of the G6PDH enzyme in insects and greatly improved mechanistic understanding of its operations. This review explore how G6PDH in insects plays a crucial role in managing the redox balance and immune related metabolism. This study aims to investigate the enzyme's role in different metabolic adaptations.


Subject(s)
Glucosephosphate Dehydrogenase , Insecta , Oxidation-Reduction , Animals , Glucosephosphate Dehydrogenase/metabolism , Pentose Phosphate Pathway , Oxidative Stress
13.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891899

ABSTRACT

In aquaculture, viral diseases pose a significant threat and can lead to substantial economic losses. The primary defense against viral invasion is the innate immune system, with interferons (IFNs) playing a crucial role in mediating the immune response. With advancements in molecular biology, the role of non-coding RNA (ncRNA), particularly microRNAs (miRNAs), in gene expression has gained increasing attention. While the function of miRNAs in regulating the host immune response has been extensively studied, research on their immunomodulatory effects in teleost fish, including silver carp (Hyphthalmichthys molitrix), is limited. Therefore, this research aimed to investigate the immunomodulatory role of microRNA-30b-5p (miR-30b-5p) in the antiviral immune response of silver carp (Hypophthalmichthys molitrix) by targeting cytokine receptor family B5 (CRFB5) via the JAK/STAT signaling pathway. In this study, silver carp were stimulated with polyinosinic-polycytidylic acid (poly (I:C)), resulting in the identification of an up-regulated miRNA (miR-30b-5p). Through a dual luciferase assay, it was demonstrated that CRFB5, a receptor shared by fish type I interferon, is a novel target of miR-30b-5p. Furthermore, it was found that miR-30b-5p can suppress post-transcriptional CRFB5 expression. Importantly, this study revealed for the first time that miR-30b-5p negatively regulates the JAK/STAT signaling pathway, thereby mediating the antiviral immune response in silver carp by targeting CRFB5 and maintaining immune system stability. These findings not only contribute to the understanding of how miRNAs act as negative feedback regulators in teleost fish antiviral immunity but also suggest their potential therapeutic measures to prevent an excessive immune response.


Subject(s)
Carps , Fish Proteins , MicroRNAs , Poly I-C , Signal Transduction , Animals , Carps/genetics , Carps/immunology , Carps/virology , Carps/metabolism , Fish Diseases/immunology , Fish Diseases/virology , Fish Diseases/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Regulation/drug effects , Immunity, Innate/genetics , Janus Kinases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Poly I-C/pharmacology , STAT Transcription Factors/metabolism , STAT Transcription Factors/genetics
14.
J Med Food ; 27(7): 589-600, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38770678

ABSTRACT

Momordica charantia (MC), a member of the Cucurbitaceae family, is well known for its pharmacological activities that exhibit hypoglycemic and hypolipidemic properties. These properties are largely because of its abundant bioactive compounds and phytochemicals. Over the years, numerous studies have confirmed the regulatory effects of MC extract on glycolipid metabolism. However, there is a lack of comprehensive reviews on newly discovered MC-related components, such as insulin receptor-binding protein-19, adMc1, and MC protein-30 and triterpenoids 3ß,7ß,25-trihydroxycucurbita-5,23(E)-dien-19-al, and the role of MC in gut microbiota and bitter taste receptors. This review offers an up-to-date overview of the recently reported chemical compositions of MC, including polysaccharides, saponins, polyphenolics, peptides, and their beneficial effects. It also provides the latest updates on the role of MC in the regulation of gut microbiota and bitter taste receptor signaling pathways. As a result, this review will serve as a theoretical basis for potential applications in the creation or modification of MC-based nutrient supplements.


Subject(s)
Gastrointestinal Microbiome , Hypoglycemic Agents , Hypolipidemic Agents , Momordica charantia , Plant Extracts , Momordica charantia/chemistry , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Gastrointestinal Microbiome/drug effects , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/chemistry , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry
15.
Cell Oncol (Dordr) ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717722

ABSTRACT

Gastric cancer (GC) is a malignant tumor with one of the lowest five-year survival rates. Traditional first-line treatment regimens, such as platinum drugs, have limited therapeutic efficacy in treating advanced GC and significant side effects, greatly reducing patient quality of life. In contrast, trastuzumab and other immune checkpoint inhibitors, such as nivolumab and pembrolizumab, have demonstrated consistent and reliable efficacy in treating GC. Here, we discuss the intrinsic characteristics of GC from a molecular perspective and provide a comprehensive review of classification and treatment advances in the disease. Finally, we suggest several strategies based on the intrinsic molecular characteristics of GC to aid in overcoming clinical challenges in the development of precision medicine and improve patient prognosis.

16.
J Affect Disord ; 359: 41-48, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38729222

ABSTRACT

BACKGROUND: Accumulating evidence suggests that latent infection with Toxoplasma gondii (T. gondii) is associated with a variety of neuropsychiatric and behavioral conditions. This research aims to explore the potential correlation between T. gondii antibody positivity and neuropsychiatric disorders through a comprehensive prospective cohort study. METHODS: The cohort study utilized the UK Biobank database to recruit 8814 individuals with no prior diagnosis of neuropsychiatric disorders. Cox proportional hazards models were employed to investigate the associations between T. gondii P22 antibody seropositivity (P22+) and the development of various types of neuropsychiatric disorders. RESULTS: Of the population, 14.65 % tested positive for T. gondii P22 antibody. The presence of T. gondii P22 antibody showed a slight inverse association with epilepsy (HR: 0.28; 95 % CI: 0.10-0.77), while it was positively associated with an increased risk of developing anxiety disorders (HR: 1.38; 95 % CI: 1.04-1.83). LIMITATIONS: The study sample consisted mostly of white British individuals aged 40 to 69 years old. Although we adjusted for potential confounders, there may be other unmeasured and residual confounding factors that could have influenced our reported associations. CONCLUSIONS: The findings suggested an increased risk of anxiety and potential evidence of epilepsy associated with T. gondii P22+. However, our analysis did not reveal an increased risk of several other neuropsychiatric conditions including Alzheimer's disease, dementia, substance abuse disorders, depression, and neurodegenerative disorders, associated with P22 antibody seropositivity.


Subject(s)
Toxoplasma , Toxoplasmosis , Humans , Female , Male , Middle Aged , Toxoplasma/immunology , Adult , Aged , Toxoplasmosis/immunology , Toxoplasmosis/epidemiology , Toxoplasmosis/blood , United Kingdom , Prospective Studies , Epilepsy/immunology , Antibodies, Protozoan/blood , Anxiety Disorders/immunology , Anxiety Disorders/epidemiology , Proportional Hazards Models , Cohort Studies , Latent Infection/immunology , Anxiety/immunology , Anxiety/epidemiology
17.
MedComm (2020) ; 5(6): e560, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38812572

ABSTRACT

White adipose tissue is not only a highly heterogeneous organ containing various cells, such as adipocytes, adipose stem and progenitor cells, and immune cells, but also an endocrine organ that is highly important for regulating metabolic and immune homeostasis. In individuals with obesity, dynamic cellular changes in adipose tissue result in phenotypic switching and adipose tissue dysfunction, including pathological expansion, WAT fibrosis, immune cell infiltration, endoplasmic reticulum stress, and ectopic lipid accumulation, ultimately leading to chronic low-grade inflammation and insulin resistance. Recently, many distinct subpopulations of adipose tissue have been identified, providing new insights into the potential mechanisms of adipose dysfunction in individuals with obesity. Therefore, targeting white adipose tissue as a therapeutic agent for treating obesity and obesity-related metabolic diseases is of great scientific interest. Here, we provide an overview of white adipose tissue remodeling in individuals with obesity including cellular changes and discuss the underlying regulatory mechanisms of white adipose tissue metabolic dysfunction. Currently, various studies have uncovered promising targets and strategies for obesity treatment. We also outline the potential therapeutic signaling pathways of targeting adipose tissue and summarize existing therapeutic strategies for antiobesity treatment including pharmacological approaches, lifestyle interventions, and novel therapies.

18.
Sci Rep ; 14(1): 10069, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38697990

ABSTRACT

Helicobacter pylori infection, a worldwide health issue, is typically treated with standard antibiotic therapies. However, these treatments often face resistance and non-compliance due to side effects. In this umbrella review, we aimed to comprehensively assess the impact of probiotics supplementation in different preparations on Helicobacter pylori standard treatment. We searched PubMed, Embase and Cochrane Central Register of Controlled Trials in the Cochrane Library from inception to June 1, 2023, to identify systematic reviews with meta-analyses that focused on eradication rates, total side effects and other outcomes of interest. The most comprehensive meta-analysis was selected for data extraction. AMSTAR 2 was used to assess quality of meta-analyses. Overall, 28 unique meta-analyses based on 534 RCTs were included. The results suggests that probiotics supplementation with pooled probiotic strains was significantly associated with improved eradication rates (RR 1.10, 95% CI 1.06-1.14) and reduced risk of total side effects (RR 0.54, 95% CI 0.42-0.70) compared with standard therapy alone. Single-strained or multi-strained preparation of probiotics supplementation showed similar results. Despite Bifidobacterium spp. showing the highest potential for eradication, the study quality was critically low for most meta-analyses, necessitating further high-quality research to explore the optimal probiotic strains or their combinations for Helicobacter pylori treatment.aq_start?>Kindly check and confirm the edit made in article title.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Probiotics , Systematic Reviews as Topic , Probiotics/therapeutic use , Helicobacter pylori/drug effects , Helicobacter Infections/drug therapy , Helicobacter Infections/therapy , Helicobacter Infections/microbiology , Humans , Meta-Analysis as Topic , Dietary Supplements , Anti-Bacterial Agents/therapeutic use , Treatment Outcome
20.
Article in English | MEDLINE | ID: mdl-38804897

ABSTRACT

BACKGROUND: In the digital era, digital literacy is a fundamental indicator of a nation's quality and plays a crucial role in public health. Exploring the theoretical mechanisms and effects of digital literacy on individuals' health is of great practical importance, advancing the initiatives of 'Digital China' and 'Healthy China'. METHODS: The study utilised three-period survey panel data from the China Family Panel Study spanning 2016, 2018, and 2020 to measure and evaluate levels of digital literacy, physical health, mental health, healthy lifestyle, and integrated health among the participants. Subsequently, a series of empirical analyses were conducted to examine the general impact, heterogeneous effects and transmission pathways of digital literacy on various types of health levels. RESULTS: Digital literacy significantly enhances all aspects of respondents' health, and this conclusion remains valid even after conducting robustness tests and addressing endogeneity through variable substitution and selecting instrumental variables using the 2SLS method. Furthermore, examining heterogeneity by considering individual traits and the makeup of digital literacy reveals that the impact of digital literacy on individuals' health varies according to age, cultural background, personal income, and the components of digital literacy. Pathway analyses also demonstrate that medical accessibility, information access, social network, and planned behaviour are key routes through which digital literacy enhances the health of the population. CONCLUSIONS: It is imperative for the government to actively promote the advancement of the digital healthcare industry, while individuals should strive to enhance their digital literacy. By collectively focussing on these efforts, national health can be significantly improved.

SELECTION OF CITATIONS
SEARCH DETAIL