Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 237: 111997, 2022 12.
Article in English | MEDLINE | ID: mdl-36137402

ABSTRACT

As growth factor receptor-2 (HER-2), progesterone receptor (PR) and estrogen receptor (ER) are scarce in triple-negative breast cancer (TNBC), it is a great challenge to combat TNBC with high tumor specificity and therapeutic efficacy. Most traditional treatments including surgical resection, chemotherapy, and radiotherapy would more or less cause serious side effects and drug resistance. Photodynamic therapy (PDT) has huge potential in the treatment of TNBC for minimal invasiveness, low toxicity, less drug resistance and high spatiotemporal selectivity. Inspired by the advantages of small-molecule-targeted PDT and the sensitization effect of myeloid cell leukemia-1 (MCL-1) inhibitor, a novel photosensitizer BC-Pc was designed by conjugating MCL-1 inhibitor with zinc phthalocyanines. Owning to 3-chloro-6-methyl-1-benzothiophene-2-carboxylic acid (BC) moiety, BC-Pc exhibits the high affinity towards MCL-1 and reduce its self-aggregation in TNBC cells. Therefore, MCL-1 targeted BC-Pc showed remarkable intracellular fluorescence and ROS generation in TNBC cells. Additionally, BC-Pc can selectively sensitize TNBC cells to ROS-induced damage, resulting in improved therapeutic effect to TNBC cells and negligible toxicity to normal cells. More importantly, BC-Pc can effectively inhibit the migration and invasion of TNBC cells, and enhance immune response, all of which will be beneficial to eradicate TNBC. To the best of our knowledge, BC-Pc is the novel MCL-targeted photosensitizer, which owns the amplified ROS-induced lethality and anticancer immune response for TNBC. Overall, our study provides a promising strategy to achieve targeting and highly efficient therapy of TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/metabolism , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/therapeutic use , Reactive Oxygen Species , Cell Line, Tumor , Immunity
2.
Antiviral Res ; 206: 105389, 2022 10.
Article in English | MEDLINE | ID: mdl-35985407

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) helicase NSP13 plays a conserved role in the replication of coronaviruses and has been identified as an ideal target for the development of antiviral drugs against SARS-CoV-2. Here, we identify a novel NSP13 helicase inhibitor punicalagin (PUG) through high-throughput screening. Surface plasmon resonance (SPR)-based analysis and molecular docking calculation reveal that PUG directly binds NSP13 on the interface of domains 1A and 2A, with a KD value of 21.6 nM. Further biochemical and structural analyses suggest that PUG inhibits NSP13 on ATP hydrolysis and prevents it binding to DNA substrates. Finally, the antiviral studies show that PUG effectively suppresses the SARS-CoV-2 replication in A549-ACE2 and Vero cells, with EC50 values of 347 nM and 196 nM, respectively. Our work demonstrates the potential application of PUG in the treatment of coronavirus disease 2019 (COVID-19) and identifies an allosteric inhibition mechanism for future drug design targeting the viral helicases.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Chlorocebus aethiops , DNA Helicases/metabolism , Humans , Hydrolyzable Tannins , Molecular Docking Simulation , RNA Helicases/chemistry , Vero Cells
3.
J Enzyme Inhib Med Chem ; 37(1): 109-117, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34894976

ABSTRACT

Invasive fungal infections including Candidiasis and Aspergillosis are associated with considerable morbidity and mortality in immunocompromised individuals, such as cancer patients. Aurora B is a key mitotic kinase required for the cell division of eukaryotes from fungus to man. Here, we identified a novel Aurora B inhibitor GSK650394 that can inhibit the recombinant Aurora B from human and Aspergillus fumigatus, with IC50 values of 5.68 and 1.29 µM, respectively. In HeLa and HepG2 cells, GSK650394 diminishes the endogenous Aurora B activity and causes cell cycle arrest in G2/M phase. Further cell-based assays demonstrate that GSK650394 efficiently suppresses the proliferation of both cancer cells and Aspergillus fumigatus. Finally, the molecular docking calculation and site-directed mutagenesis analyses reveal the molecular mechanism of Aurora B inhibition by GSK650394. Our work is expected to provide new insight into the combinational therapy of cancer and Aspergillus fumigatus infection.


Subject(s)
Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Aspergillus fumigatus/drug effects , Aurora Kinase B/antagonists & inhibitors , Benzoates/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Drug Discovery , Antifungal Agents/chemistry , Antineoplastic Agents/chemistry , Aurora Kinase B/metabolism , Benzoates/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Tumor Cells, Cultured
4.
Drug Discov Today ; 26(11): 2547-2558, 2021 11.
Article in English | MEDLINE | ID: mdl-34023495

ABSTRACT

Macrodomains are evolutionarily conserved structural elements. Many macrodomains feature as binding modules of ADP-ribose, thus participating in the recognition and removal of mono- and poly-ADP-ribosylation. Macrodomains are involved in the regulation of a variety of physiological processes and represent valuable therapeutic targets. Moreover, as part of the nonstructural proteins of certain viruses, macrodomains are also pivotal for viral replication and pathogenesis. Thus, targeting viral macrodomains with inhibitors is considered to be a promising antiviral intervention. In this review, we summarize our current understanding of human and viral macrodomains that are related to mono-ADP-ribosylation, with emphasis on the search for inhibitors. The advances summarized here will be helpful for the design of macrodomain-specific agents for therapeutic and diagnostic applications.


Subject(s)
ADP-Ribosylation/drug effects , Antiviral Agents/pharmacology , Protein Domains , Structure-Activity Relationship , Viral Nonstructural Proteins/antagonists & inhibitors , Adenosine Diphosphate Ribose/metabolism , Humans , Protein Processing, Post-Translational , Protein Structural Elements , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...