Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 515
Filter
1.
Sci Adv ; 10(33): eado4571, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39141743

ABSTRACT

Morphological novelties, or key innovations, are instrumental to the diversification of the organisms. In plants, one such innovation is the evolution of zygomorphic flowers, which is thought to promote outcrossing and increase flower morphological diversity. We isolated three allelic mutants from two Mimulus species displaying altered floral symmetry and identified the causal gene as the ortholog of Arabidopsis BLADE-ON-PETIOLE. We found that MlBOP and MlCYC2A physically interact and this BOP-CYC interaction module is highly conserved across the angiosperms. Furthermore, MlBOP self-ubiquitinates and suppresses MlCYC2A self-activation. MlCYC2A, in turn, impedes MlBOP ubiquitination. Thus, this molecular tug-of-war between MlBOP and MlCYC2A fine-tunes the expression of MlCYC2A, contributing to the formation of bilateral symmetry in flowers, a key trait in angiosperm evolution.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Mimulus , Plant Proteins , Flowers/genetics , Flowers/metabolism , Mimulus/genetics , Mimulus/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Mutation , Ubiquitination , Protein Binding , Phenotype , Alleles , DNA-Binding Proteins , Transcription Factors
2.
Int J Biol Macromol ; 276(Pt 1): 133873, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39013505

ABSTRACT

In this study, based on the self-assembly strategy, we fused CipA with carbonyl reductase LXCARS154Y derived from Leifsonia xyli by gene coding, and successfully performed the carrier-free immobilization of LXCARS154Y. The immobilized enzyme was then characterized using scanning electron microscope (SEM), dynamic light scattering (DLS) and fourier transform infrared spectroscopy (FTIR). Compared with the free enzyme, the immobilized LXCARS154Y exhibited a 2.3-fold improvement in the catalytic efficiency kcat/km for the synthesis of a chiral pharmaceutical intermediate (R)-3,5-bis(trifluoromethyl)phenyl ethanol ((R)-BTPE) by reducing 3,5-bis(trifluoromethyl)acetophenone (BTAP). Moreover, the immobilized enzyme showed the enhanced stability while maintaining over 61 % relative activity after 18 cycles of batch reaction. Further, when CipA-fused carbonyl reductase was employed for (R)-BTPE production in a continuous flow reaction, almost complete yield (97.0 %) was achieved within 7 h at 2 M (512.3 g/L) of BTAP concentration, with a space-time yield of 1717.1 g·L-1·d-1. Notably, we observed the retention of cofactor NADH by CipA-based enzyme aggregates, resulting in a higher total turnover number (TTN) of 4815 to facilitate this bioreductive process. This research developed a concise strategy for efficient preparation of chiral intermediate with cofactor self-sufficiency via continuous flow biocatalysis, and the relevant mechanism was also explored.


Subject(s)
Alcohol Oxidoreductases , Enzymes, Immobilized , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/genetics , Bioreactors , Kinetics , Alcohols/chemistry , Biocatalysis , Coenzymes/chemistry , Coenzymes/metabolism , Stereoisomerism
3.
Cell Rep ; 43(7): 114444, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38990723

ABSTRACT

The emergence of novel traits is often preceded by a potentiation phase, when all the genetic components necessary for producing the trait are assembled. However, elucidating these potentiating factors is challenging. We have previously shown that an anthocyanin-activating R2R3-MYB, STRIPY, triggers the emergence of a distinct foliar pigmentation pattern in the monkeyflower Mimulus verbenaceus. Here, using forward and reverse genetics approaches, we identify three potentiating factors that pattern STRIPY expression: MvHY5, a master regulator of light signaling that activates STRIPY and is expressed throughout the leaf, and two leaf developmental regulators, MvALOG1 and MvTCP5, that are expressed in opposing gradients along the leaf proximodistal axis and negatively regulate STRIPY. These results provide strong empirical evidence that phenotypic novelties can be potentiated through incorporation into preexisting genetic regulatory networks and highlight the importance of positional information in patterning the novel foliar stripe.


Subject(s)
Anthocyanins , Gene Expression Regulation, Plant , Pigmentation , Plant Leaves , Anthocyanins/metabolism , Plant Leaves/metabolism , Mimulus/metabolism , Mimulus/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Phenotype
4.
Int J Biol Macromol ; 277(Pt 1): 134024, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39032899

ABSTRACT

Silicosis is a systemic disease with predominantly diffuse fibrosis of the lungs due to prolonged inhalation of free SiO2 dust during the manufacturing process, for which there is no effective treatment. In this study, we used a combined epigenetic and transcriptomic approach to reveal the chromatin-opening features of silicosis and identify the key transcription factor activator protein 1 (AP-1) that responds to silicosis fibrosis. Therapeutic administration of an AP-1 inhibitor inhibits the PI3K/AKT signaling pathway, reduces fibrosis marker proteins, and significantly ameliorates lung fibrosis in a mouse model of silicosis. In addition, it was observed that the expression of Jun and JunB was significantly up-regulated in a TGF-ß1-induced in vitro transdifferentiation model of NIH/3T3 cells, and Co-IP confirmed that a protein complex could be formed between Jun and JunB. Mechanistically, silencing of Jun and JunB expression reversed the activation of the PI3K/AKT signaling pathway and the upregulation of fibrosis marker proteins in NIH/3 T3 cells after TGF-ß1 stimulation. Taken together, Jun/JunB is expected to be a potential therapeutic target for silicosis fibrosis.


Subject(s)
Proto-Oncogene Proteins c-jun , Signal Transduction , Silicosis , Transcription Factor AP-1 , Silicosis/metabolism , Silicosis/drug therapy , Silicosis/pathology , Animals , Mice , Transcription Factor AP-1/metabolism , NIH 3T3 Cells , Signal Transduction/drug effects , Proto-Oncogene Proteins c-jun/metabolism , Transforming Growth Factor beta1/metabolism , Humans , Male , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Disease Models, Animal , Transcription Factors/metabolism , Transcription Factors/genetics , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Mice, Inbred C57BL
5.
Biochem Pharmacol ; 226: 116392, 2024 08.
Article in English | MEDLINE | ID: mdl-38942091

ABSTRACT

Bitter taste receptors (TAS2Rs) Tas2r108 gene possesses a high abundance in mouse kidney; however, the biological functions of Tas2r108 encoded receptor TAS2Rs member 4 (TAS2R4) are still unknown. In the present study, we found that mouse TAS2R4 (mTAS2R4) signaling was inactivated in chronic high glucose-stimulated mouse podocyte cell line MPC, evidenced by the decreased protein expressions of mTAS2R4 and phospholipase C ß2 (PLCß2), a key downstream molecule of mTAS2R4 signaling. Nonetheless, agonism of mTAS2R4 by quinine recovered mTAS2R4 and PLCß2 levels, and increased podocyte cell viability as well as protein expressions of ZO-1 and nephrin, biomarkers of podocyte slit diaphragm, in high glucose-cultured MPC cells. However, blockage of mTAS2R4 signaling with mTAS2R4 blockers γ-aminobutyric acid and abscisic acid, a Gßγ inhibitor Gallein, or a PLCß2 inhibitor U73122 all abolished the effects of quinine on NLRP3 inflammasome and p-NF-κB p65 as well as the functional podocyte proteins in MPC cells in a high glucose condition. Furthermore, knockdown of mTAS2R4 with lentivirus-carrying Tas2r108 shRNA also ablated the effect of quinine on the key molecules of the above inflammatory signalings and podocyte functions in high glucose-cultured MPC cells. In summary, we demonstrated that activation of TAS2R4 signaling alleviated the podocyte injury caused by chronic high glucose, and inhibition of NF-κB p65 and NLRP3 inflammasome mediated the protective effects of TAS2R4 activation on podocytes. Moreover, activation of TAS2R4 signaling could be an important strategy for prevention and treatment of diabetic kidney disease.


Subject(s)
Glucose , Podocytes , Receptors, G-Protein-Coupled , Signal Transduction , Podocytes/metabolism , Podocytes/drug effects , Podocytes/pathology , Animals , Mice , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Glucose/toxicity , Glucose/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , Cell Line
6.
Environ Pollut ; 356: 124311, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38838811

ABSTRACT

Prolonged exposure to free silica leads to the development of silicosis, wherein activated fibroblasts play a pivotal role in its pathogenesis and progression. Fibroblast Activation Protein (FAP), as a biomarker for activated fibroblasts, its expression pattern and role in key aspects of silicosis pathogenesis remain unclear. This study elucidated the expression pattern and function of FAP through population-based epidemiological investigations, establishment of mouse models of silicosis, and in vitro cellular models. Results indicated a significant elevation of FAP in plasma from silicosis patients and lung tissues from mouse models of silicosis. In the cellular model, we observed a sharp increase in FAP expression early in the differentiation process, which remained high expression. Inhibition of FAP suppressed fibroblast differentiation, while overexpression of FAP produced the opposite effect. Moreover, fibroblast-derived FAP can alter the phenotype and function of neighboring macrophages. In summary, we revealed a high expression pattern of FAP in silicosis and its potential mechanistic role in fibrosis, suggesting FAP as a potential therapeutic target for silicosis.


Subject(s)
Fibroblasts , Membrane Proteins , Silicosis , Silicosis/metabolism , Animals , Mice , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , Fibroblasts/metabolism , Male , Serine Endopeptidases/metabolism , Gelatinases/metabolism , Disease Models, Animal , Endopeptidases/metabolism , Lung/metabolism , Middle Aged , Female , Mice, Inbred C57BL , Macrophages/metabolism
7.
Materials (Basel) ; 17(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38730909

ABSTRACT

In this paper, the workability, mechanical, ion leaching, and drying shrinkage properties of alkali-activated concrete with recycled coarse and fine aggregates were studied, and the pore structure and micro-morphology of different alkali-activated recycled aggregate concretes (AARACs) were characterized by using the mercury intrusion method and scanning electron microscopy, respectively. The experimental results showed that with the increase in the replacement rate of the recycled fine aggregate (RFA), the flowability showed a decreasing trend. Adding a certain amount of RFA improves the mechanical properties of the AARAC. The compressive strength at a curing age of 28 days was 65.3 MPa with 70 wt% RFA replacement. When the replacement rate of the RFA was 100 wt%, the maximum splitting tensile strength (4.5 MPa) was obtained at a curing age of 7 days. However, the addition of the RFA had little effect on the flexural strength of the AARAC. As an extension of the curing age, the splitting tensile strength, flexural strength, tension-to-compression ratio, and flexure-to-compression ratio all showed an increasing trend at first and then a decreasing trend. At a curing age of 7 days, the tension-to-compression ratio and flexure-to-compression ratio were both high (except for those of R100), indicating that the ductility and toughness of the specimen were improved. The addition of the RFA increased the drying shrinkage of the AARAC. At a curing age of 120 days, compared to the specimen without the RFA, the drying shrinkage rate of the specimen with the addition of 70 wt% RFA increased by 34.15%. As the curing age increased, the microstructure of the reaction products became denser, but the proportion of large-diameter pores increased. This study evaluated the application of RFA in AARAC. The experimental results showed that the RFA-based AARAC had acceptable mechanical and durability properties.

8.
Trends Genet ; 40(8): 668-680, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38704304

ABSTRACT

It has been well documented that mutations in coding DNA or cis-regulatory elements underlie natural phenotypic variation in many organisms. However, the development of sophisticated functional tools in recent years in a wide range of traditionally non-model systems have revealed many 'unusual suspects' in the molecular bases of phenotypic evolution, including upstream open reading frames (uORFs), cryptic splice sites, and small RNAs. Furthermore, large-scale genome sequencing, especially long-read sequencing, has identified a cornucopia of structural variation underlying phenotypic divergence and elucidated the composition of supergenes that control complex multi-trait polymorphisms. In this review article we highlight recent studies that demonstrate this great diversity of molecular mechanisms producing adaptive genetic variation and the panoply of evolutionary paths leading to the 'grandeur of life'.


Subject(s)
Evolution, Molecular , Open Reading Frames , Phenotype , Open Reading Frames/genetics , Humans , Animals , Genetic Variation/genetics , Mutation
9.
Int Immunopharmacol ; 133: 112067, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38608444

ABSTRACT

Silicosis is one of the most common and severe types of pneumoconiosis and is characterized by lung dysfunction, persistent lung inflammation, pulmonary nodule formation, and irreversible pulmonary fibrosis. The transdifferentiation of fibroblasts into myofibroblasts is one of the main reasons for the exacerbation of silicosis. However, the underlying mechanism of transcription factors regulating silicosis fibrosis has not been clarified. The aim of this study was to investigate the potential mechanism of transcription factor FOXF1 in fibroblast transdifferentiation in silica-induced pulmonary fibrosis. Therefore, a silicosis mouse model was established, and we found that FOXF1 expression level was significantly down-regulated in the silicosis group, and after overexpression of FOXF1 by adeno-associated virus (AAV), FOXF1 expression level was up-regulated, and silicosis fibrosis was alleviated. In order to further explore the specific regulatory mechanism of FOXF1 in silicosis, we established a fibroblasts transdifferentiation model induced by TGF-ß in vitro. In the model, the expression levels of SMAD2/3 and P-SMAD2/3 were up-regulated, but the expression levels of SMAD2/3 and P-SMAD2/3 were down-regulated, inhibiting transdifferentiation and accumulation of extracellular matrix after the overexpressed FOXF1 plasmid was constructed. However, after silencing FOXF1, the expression levels of SMAD2/3 and P-SMAD2/3 were further up-regulated, aggravating transdifferentiation and accumulation of extracellular matrix. These results indicate that the activation of FOXF1 in fibroblasts can slow down the progression of silicosis fibrosis by inhibiting TGF-ß/SMAD2/3 classical pathway, which provides a new idea for further exploration of silicosis treatment.


Subject(s)
Cell Transdifferentiation , Fibroblasts , Pulmonary Fibrosis , Signal Transduction , Silicosis , Transforming Growth Factor beta , Animals , Humans , Male , Mice , Cell Transdifferentiation/genetics , Cells, Cultured , Disease Models, Animal , Fibroblasts/cytology , Fibroblasts/metabolism , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Lung/pathology , Mice, Inbred C57BL , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Silicon Dioxide , Silicosis/complications , Smad2 Protein/genetics , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Smad3 Protein/genetics , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
10.
Biotechnol J ; 19(4): e2300557, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581092

ABSTRACT

The halogenase-based catalysis is one of the most environmentally friendly methods for the synthesis of halogenated products, among which flavin-dependent halogenases (FDHs) have attracted great interest as one of the most promising biocatalysts due to the remarkable site-selectivity and wide substrate range. However, the complexity of constructing the NAD+-NADH-FAD-FADH2 bicoenzyme cycle system has affected the engineering applications of FDHs. In this work, a coenzyme self-sufficient tri-enzyme fusion was constructed and successfully applied to the continuous halogenation of L-tryptophan. SpFDH was firstly identified derived from Streptomyces pratensis, a highly selective halogenase capable of generating 6-chloro-tryptophan from tryptophan. Then, using gene fusion technology, SpFDH was fused with glucose dehydrogenase (GDH) and flavin reductase (FR) to form a tri-enzyme fusion, which increased the yield by 1.46-fold and making the coenzymes self-sufficient. For more efficient halogenation of L-tryptophan, a continuous halogenation bioprocess of L-tryptophan was developed by immobilizing the tri-enzyme fusion and attaching it to a continuous catalytic device, which resulted in a reaction yield of 97.6% after 12 h reaction. An FDH from S. pratensis was successfully applied in the halogenation and our study provides a concise strategy for the preparation of halogenated tryptophan mediated by multienzyme cascade catalysis.


Subject(s)
Halogenation , Tryptophan , Coenzymes , Oxidoreductases/genetics , Oxidoreductases/metabolism , Flavins/metabolism
11.
Ecotoxicol Environ Saf ; 275: 116286, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38564864

ABSTRACT

Pneumoconiosis is one of the most serious occupational diseases worldwide. Silicosis due to prolonged inhalation of free silica dust during occupational activities is one of the main types. Cuproptosis is a newly discovered mode of programmed cell death characterized by the accumulation of free copper in the cell, which ultimately leads to cell death. Increased copper in the serum of silicosis patients, suggests that the development of silicosis is accompanied by changes in copper metabolism, but whether cuproptosis is involved in the progression of silicosis is actually to be determined. To test this hypothesis, we screened the genetic changes in patients with idiopathic fibrosis by bioinformatics methods and predicted and functionally annotated the cuproptosis-related genes among them. Subsequently, we established a mouse silicosis model and detected the concentration of copper ions and the activity of ceruloplasmin (CP) in serum, as well as changes of the concentration of copper and cuproptosis related genes in mouse lung tissues. We identified 9 cuproptosis-related genes among the differential genes in patients with IPF at different times and the tissue-specific expression levels of ferredoxin 1 (FDX1) and Lipoyl synthase (LIAS) proteins. Furthermore, serum CP activity and copper ion levels in silicosis mice were elevated on days 7th and 56th after silica exposure. The expression of CP in mouse lung tissue elevated at all stages after silica exposure. The mRNA level of FDX1 decreased on days 7th and 56th, and the protein level remained in accordance with the mRNA level on day 56th. LIAS and Dihydrolipoamide dehydrogenase (DLD) levels were downregulated at all times after silica exposure. In addition, Heatshockprotein70 (HSP70) expression was increased on day 56. In brief, our results demonstrate that there may be cellular cuproptosis during the development of experimental silicosis in mice and show synchronization with enhanced copper loading in mice.


Subject(s)
Copper , Silicosis , Humans , Animals , Mice , Copper/toxicity , Silicosis/genetics , Apoptosis , Computational Biology , Disease Models, Animal , RNA, Messenger , Silicon Dioxide/toxicity
12.
Neurotoxicology ; 102: 1-11, 2024 May.
Article in English | MEDLINE | ID: mdl-38461971

ABSTRACT

Although overexposure to manganese (Mn) is known to cause neurotoxic damage, effective exposure markers for assessing Mn loading in Mn-exposed workers are lacking. Here, we construct a Mn-exposed rat model to perform correlation analysis between Mn-induced neurological damage and Mn levels in various biological samples. We combine this analysis with epidemiological investigation to assess whether Mn concentrations in red blood cells (MnRBCs) and urine (MnU) can be used as valid exposure markers. The results show that Mn exposure resulted in neurotoxic damage in rats and that MnRBCs correlated well with neurological damage, showing potential as a novel Mn exposure biomarker. These findings provide a basis for health monitoring of Mn-exposed workers and the development of more appropriate biological exposure limits.


Subject(s)
Biomarkers , Erythrocytes , Manganese , Neurotoxicity Syndromes , Animals , Erythrocytes/drug effects , Erythrocytes/metabolism , Manganese/blood , Manganese/toxicity , Manganese/urine , Biomarkers/blood , Biomarkers/urine , Male , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/blood , Rats , Humans , Manganese Poisoning/blood , Rats, Sprague-Dawley , Occupational Exposure/adverse effects , Female
14.
Int J Biol Macromol ; 266(Pt 1): 131058, 2024 May.
Article in English | MEDLINE | ID: mdl-38522707

ABSTRACT

Long-term exposure to inhalable silica particles may lead to severe systemic pulmonary disease, such as silicosis. Exosomes have been demonstrated to dominate the pathogenesis of silicosis, but the underlying mechanisms remain unclear. Therefore, this study aimed to explore the roles of exosomes by transmitting miR-107, which has been linked to the toxic pulmonary effects of silica particles. We found that miR-107, miR-122-5p, miR-125a-5p, miR-126-5p, and miR-335-5p were elevated in exosomes extracted from the serum of patients with silicosis. Notably, an increase in miR-107 in serum exosomes and lung tissue was observed in the experimental silicosis mouse model, while the inhibition of miR-107 reduced pulmonary fibrosis. Moreover, exosomes helped the migration of miR-107 from macrophages to lung fibroblasts, triggering the transdifferentiation of cell phenotypes. Further experiments demonstrated that miR-107 targets CDK6 and suppresses the expression of retinoblastoma protein phosphorylation and E2F1, resulting in cell-cycle arrest. Overall, micron-grade silica particles induced lung fibrosis through exosomal miR-107 negatively regulating the cell cycle signaling pathway. These findings may open a new avenue for understanding how silicosis is regulated by exosome-mediated cell-to-cell communication and suggest the prospect of exosomes as therapeutic targets.


Subject(s)
Exosomes , MicroRNAs , Pulmonary Fibrosis , Silicon Dioxide , Exosomes/metabolism , Exosomes/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Silicon Dioxide/toxicity , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Mice , Humans , Silicosis/metabolism , Silicosis/pathology , Silicosis/genetics , Silicosis/etiology , Cell Communication , Male , Disease Models, Animal , Fibroblasts/metabolism , Macrophages/metabolism , Lung/pathology , Lung/metabolism
15.
Mol Ther ; 32(4): 1110-1124, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38341612

ABSTRACT

Whether and how tumor intrinsic signature determines macrophage-elicited metastasis remain elusive. Here, we show, in detailed studies of data regarding 7,477 patients of 20 types of human cancers, that only 13.8% ± 2.6%/27.9% ± 3.03% of patients with high macrophage infiltration index exhibit early recurrence/vascular invasion. In parallel, although macrophages enhance the motility of various hepatoma cells, their enhancement intensity is significantly heterogeneous. We identify that the expression of malignant Dicer, a ribonuclease that cleaves miRNA precursors into mature miRNAs, determines macrophage-elicited metastasis. Mechanistically, the downregulation of Dicer in cancer cells leads to defects in miRNome targeting NF-κB signaling, which in turn enhances the ability of cancer cells to respond to macrophage-related inflammatory signals and ultimately promotes metastasis. Importantly, transporting miR-26b-5p, the most potential miRNA targeting NF-κB signaling in hepatocellular carcinoma, can effectively reverse macrophage-elicited metastasis of hepatoma in vivo. Our results provide insights into the crosstalk between Dicer-elicited miRNome and cancer immune microenvironments and suggest that strategies to remodel malignant cell miRNome may overcome pro-tumorigenic activities of inflammatory cells.


Subject(s)
Carcinoma, Hepatocellular , MicroRNAs , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Carcinoma, Hepatocellular/pathology , Signal Transduction/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Macrophages/metabolism , Cell Line, Tumor , Tumor Microenvironment/genetics
16.
Article in English | MEDLINE | ID: mdl-38381312

ABSTRACT

ω-Transaminase (ω-TA) is a promising biocatalyst for the synthesis of chiral amines. In this study, a ω-TA derived from Vitreoscilla stercoraria DSM 513 (VsTA) was heterologous expressed in recombinant E. coli cells and applied to reduce 4'-(trifluoromethyl)acetophenone (TAP) to (S)-1-[4-(trifluoromethyl)phenyl]ethylamine ((S)-TPE), a pharmaceutical intermediate of chiral amine. Aimed to a more efficient synthesis of (S)-TPE, VsTA was further engineered via a semi-rational strategy. Compared to wild-type VsTA, the obtained R411A variant exhibited 2.39 times higher activity towards TAP and enhanced catalytic activities towards other prochiral aromatic ketones. Additionally, better thermal stability for R411A variant was observed with 25.4% and 16.3% increase in half-life at 30 °C and 40 °C, respectively. Structure-guided analysis revealed that the activity improvement of R411A variant was attributed to the introduction of residue A411, which is responsible for the increase in the hydrophobicity of substrate tunnel and the alleviation of steric hindrance, thereby facilitating the accessibility of hydrophobic substrate TAP to the active center of VsTA. This study provides an efficient strategy for the engineering of ω-TA based on semi-rational approach and has the potential for the molecular modification of other biocatalysts.

17.
Materials (Basel) ; 17(4)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38399177

ABSTRACT

Cement-based material encapsulation is a method of encapsulating electronic devices in highly thermally conductive cement-based materials to improve the heat dissipation performance of electronic components. In the field of construction, a thermoelectric generator (TEG) encapsulated with cement-based materials used in the building envelope has significant potential for waste heat energy recovery. The purpose of this study was to investigate the effect of cement-based materials integrated with aluminum heatsinks on the heat dissipation of the TEG composite structure. In this work, three types of thermoelectric work units encapsulated with cement paste were proposed. Moreover, we explored the effect of encapsulated structure, heat dissipation area, the height of thermoelectric single leg, and heat input temperature on maintaining the temperature difference between the two sides of the thermoelectric single leg with COMSOL Multiphysics. The numerical simulation results showed that under the conditions of a heat source temperature of 313.15 K and ambient temperature of 298.15 K, the temperature difference between the two sides of the internal thermoelectric single leg of Type-III can maintain a stable temperature difference of 7.77 K, which is 32.14% higher than that of Type-I and Type-II (5.88 K), and increased by 26.82% in the actual experiment. This work provides a reference for the selection and application of TEG composite structures of cement-based materials combined with aluminum heatsinks.

18.
BMC Plant Biol ; 24(1): 62, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38262916

ABSTRACT

Nectar guide trichomes play crucial ecological roles in bee-pollinated flowers, as they serve as footholds and guides for foraging bees to access the floral rewards. However, the genetic basis of natural variation in nectar guide trichomes among species remains poorly understood. In this study, we performed genetic analysis of nectar guide trichome variation between two closely related monkeyflower (Mimulus) species, the bumblebee-pollinated Mimulus lewisii and self-pollinated M. parishii. We demonstrate that a MIXTA-like R2R3-MYB gene, GUIDELESS, is a major contributor to the nectar guide trichome length variation between the two species. The short-haired M. parishii carries a recessive allele due to non-synonymous substitutions in a highly conserved motif among MIXTA-like MYB proteins. Furthermore, our results suggest that besides GUIDELESS, additional loci encoding repressors of trichome elongation also contribute to the transition from bumblebee-pollination to selfing. Taken together, these results suggest that during a pollination syndrome switch, changes in seemingly complex traits such as nectar guide trichomes could have a relatively simple genetic basis, involving just a few genes of large effects.


Subject(s)
Mimulus , Plant Nectar , Bees , Animals , Trichomes , Pollination , Flowers
19.
Ecotoxicol Environ Saf ; 272: 116029, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38290312

ABSTRACT

Manganese is essential trace elements, to participate in the body a variety of biochemical reactions, has important physiological functions, such as stimulate the immune cell proliferation, strengthen the cellular immunity, etc. However, excessive manganese exposure can cause damage to multiple systems of the body.The immune system is extremely vulnerable to external toxicants, however manganese research on the immune system are inadequate and biomarkers are lacking. Therefore, here we applied a manganese-exposed rat model to make preliminary observations on the immunotoxic effects of manganese. We found that manganese exposure inhibited humoral immune function in rats by decreasing peripheral blood IgG (ImmunoglobulinG, IgG), IgM (ImmunoglobulinM, IgM) and complement C3 levels; It also regulates rat cellular immune activity by influencing peripheral blood, spleen, and thymus T cell numbers and immune organ ICs (Immune Checkpoints, ICs) and cytokine expression. Furthermore, it was revealed that the impact of manganese exposure on the immune function of rats exhibited a correlation with both the dosage and duration of exposure. Notably, prolonged exposure to high doses of manganese had the most pronounced influence on rat immune function, primarily manifesting as immunosuppression.The above findings suggest that manganese exposure leads to impaired immune function and related changes in immune indicators, or may provide clues for the discovery of its biomarkers.


Subject(s)
Manganese , T-Lymphocytes , Rats , Animals , Manganese/toxicity , Immunoglobulin M , Immunoglobulin G , Biomarkers
20.
Article in English | WPRIM (Western Pacific) | ID: wpr-1042016

ABSTRACT

Background@#Genetic defects in the human thyroid-stimulating hormone (TSH) receptor (TSHR) gene can cause congenital hypothyroidism (CH). However, the biological functions and comprehensive genotype–phenotype relationships for most TSHR variants associated with CH remain unexplored. We aimed to identify TSHR variants in Chinese patients with CH, analyze the functions of the variants, and explore the relationships between TSHR genotypes and clinical phenotypes. @*Methods@#In total, 367 patients with CH were recruited for TSHR variant screening using whole-exome sequencing. The effects of the variants were evaluated by in-silico programs such as SIFT and polyphen2. Furthermore, these variants were transfected into 293T cells to detect their Gs/cyclic AMP and Gq/11 signaling activity. @*Results@#Among the 367 patients with CH, 17 TSHR variants, including three novel variants, were identified in 45 patients, and 18 patients carried biallelic TSHR variants. In vitro experiments showed that 10 variants were associated with Gs/cyclic AMP and Gq/11 signaling pathway impairment to varying degrees. Patients with TSHR biallelic variants had lower serum TSH levels and higher free triiodothyronine and thyroxine levels at diagnosis than those with DUOX2 biallelic variants. @*Conclusions@#We found a high frequency of TSHR variants in Chinese patients with CH (12.3%), and 4.9% of cases were caused by TSHR biallelic variants. Ten variants were identified as loss-of-function variants. The data suggest that the clinical phenotype of CH patients caused by TSHR biallelic variants is relatively mild. Our study expands the TSHR variant spectrum and provides further evidence for the elucidation of the genetic etiology of CH.

SELECTION OF CITATIONS
SEARCH DETAIL