Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Imeta ; 3(2): e178, 2024 Apr.
Article En | MEDLINE | ID: mdl-38882492

The advent of generative artificial intelligence (AI) technologies marks a transformative moment for the scientific sphere, unlocking novel avenues to elevate scientific writing's efficiency and quality, expedite insight discovery, and enhance code development processes. Essential to leveraging these advancements is prompt engineering, a method that enhances AI interaction efficiency and quality. Despite its benefits, effective application requires blending researchers' expertise with AI, avoiding overreliance. A balanced strategy of integrating AI with independent critical thinking ensures the advancement and quality of scientific research, leveraging innovation while maintaining research integrity.

2.
Toxics ; 12(6)2024 May 26.
Article En | MEDLINE | ID: mdl-38922070

The toxic metal (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) pollution in 250 agricultural soil samples representing the urban area of Jiaxing was studied to investigate the temporal and spatial variations. Compared to the early 1990s, the pollution level has increased. Industry and urbanization were the main factors causing toxic metal pollution on temporal variation, especially the use of feed containing toxic metals. The soil types and crop cultivation methods are the main factors causing toxic metal pollution on spatial variation. Although the single-factor pollution indices of all the toxic metals were within the safe limits, as per the National Soil Environmental Quality Standard (risk screening value), if the background values of soil elements in Jiaxing City are used as the standard, the pollution index of all the elements surveyed exceeds 1.0, reaching a level of mild pollution. The soil samples investigated were heavily contaminated with toxic metal compounds, and their levels increased over time. This situation poses potential ecological and health risks.

3.
J Hazard Mater ; 472: 134474, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38696961

Body size is a key life-history trait of organisms, which has important ecological functions. However, the relationship between soil antibiotic resistance gene (ARG) distribution and organisms' body size has not been systematically reported so far. Herein, the impact of organic fertilizer on the soil ARGs and organisms (bacteria, fungi, and nematode) at the aggregate level was analyzed. The results showed that the smaller the soil aggregate size, the greater the abundance of ARGs, and the larger the body size of bacteria and nematodes. Further analysis revealed significant positive correlations of ARG abundance with the body sizes of bacteria, fungi, and nematodes, respectively. Additionally, the structural equation model demonstrated that changes in soil fertility mainly regulate the ARG abundance by affecting bacterial body size. The random forest model revealed that total phosphorus was the primary soil fertility factor influencing the body size of organisms. Therefore, these findings proposed that excessive application of phosphate fertilizers could increase the risk of soil ARG transmission by increasing the body size of soil organisms. This study highlights the significance of organisms' body size in determining the distribution of soil ARGs and proposes a new disadvantage of excessive fertilization from the perspective of ARGs.


Bacteria , Body Size , Drug Resistance, Microbial , Fertilizers , Fungi , Nematoda , Soil Microbiology , Soil , Body Size/drug effects , Bacteria/genetics , Bacteria/drug effects , Animals , Soil/chemistry , Fungi/genetics , Fungi/drug effects , Nematoda/drug effects , Nematoda/genetics , Drug Resistance, Microbial/genetics
4.
Sci Total Environ ; 933: 173068, 2024 Jul 10.
Article En | MEDLINE | ID: mdl-38723965

Cadmium (Cd) is an extremely toxic heavy metal that can originate from industrial activities and accumulate in agricultural soils. This study investigates the potential of biologically synthesized silicon oxide nanoparticles (Bio-SiNPs) in alleviating Cd toxicity in bayberry plants. Bio-SiNPs were synthesized using the bacterial strain Chryseobacterium sp. RTN3 and thoroughly characterized using advanced techniques. A pot experiment results demonstrated that Cd stress substantially reduced leaves biomass, photosynthesis efficiency, antioxidant enzyme activity, and induced oxidative damage in bayberry (Myrica rubra) plants. However, Bio-SiNPs application at 200 mg kg-1 significantly enhanced plant biomass, chlorophyll content (26.4 %), net photosynthetic rate (8.6 %), antioxidant enzyme levels, and mitigated reactive oxygen species production under Cd stress. Bio-SiNPs modulated key stress-related phytohormones by increasing salicylic acid (13.2 %) and abscisic acid (13.7 %) contents in plants. Bio-SiNPs augmented Si deposition on root surfaces, preserving normal ultrastructure in leaf cells. Additionally, 16S rRNA gene sequencing demonstrated that Bio-SiNPs treatment favorably reshaped structure and abundance of specific bacterial groups (Proteobacteria, Actinobacteriota, and Acidobacteriota) in the rhizosphere. Notably, Bio-SiNPs application significantly modulated the key metabolites (phenylacetaldehyde, glycitein, maslinic acid and methylmalonic acid) under both normal and Cd stress conditions. Overall, this study highlights that bio-nanoremediation using Bio-SiNPs enhances tolerance to Cd stress in bayberry plants by beneficially modulating biochemical, microbial, and metabolic attributes.


Cadmium , Myrica , Rhizosphere , Soil Microbiology , Soil Pollutants , Soil Pollutants/toxicity , Cadmium/toxicity , Microbiota/drug effects , Silicon Dioxide , Nanoparticles/toxicity
5.
Chemosphere ; 352: 141336, 2024 Mar.
Article En | MEDLINE | ID: mdl-38309599

In the pursuit of a safe, low-cost, and sustainable method for the reuse of landfill-mined-soil-like-fractions (LFMSFs), pot experiments were conducted using seven growth substrates consisting of LFMSFs, tea residue, and peat for the cultivation of Photinia × fraseri. Six of the substrates had 40 %:60 %, 60 %:40 %, and 80 %:20 % volume ratios of LFMSFs to tea residue or peat, and one substrate consisted entirely of LFMSFs. The physicochemical properties of the substrate, growth parameters of the plants, and heavy metal content in the different pots were determined after one year of growth. The results indicated that the physicochemical properties of the substrate, that was composed of a mixture of LFMSFs and tea residue showed a significant improvement in organic matter, nitrogen, phosphorus, and potassium. However, there was also an increase in the salt and heavy metal contents when compared with those of peat. The plant growth in the LFMSF and tea residue substrate was slightly lower than that in the LFMSF and peat mixture. Notably, the best plant growth and environmentally friendly effects were observed when LFMSFs were added at 40 %. Additionally, most of the heavy metals were primarily removed from the substrate through the leaves of the seedlings, with the heavy metal contents being relatively low. In conclusion, LFMSFs as a cultivation substrate, represent a practical approach for reutilization, which could contribute to the reduction of reliance on traditional resources.


Metals, Heavy , Soil Pollutants , Soil/chemistry , Metals, Heavy/analysis , Soil Pollutants/analysis , Waste Disposal Facilities , Tea
6.
Plants (Basel) ; 12(20)2023 Oct 12.
Article En | MEDLINE | ID: mdl-37896014

Microbial compost plays a crucial role in improving soil health, soil fertility, and plant biomass. These biofertilizers, based on microorganisms, offer numerous benefits such as enhanced nutrient acquisition (N, P, and K), production of hydrogen cyanide (HCN), and control of pathogens through induced systematic resistance. Additionally, they promote the production of phytohormones, siderophore, vitamins, protective enzymes, and antibiotics, further contributing to soil sustainability and optimal agricultural productivity. The escalating generation of organic waste from farm operations poses significant threats to the environment and soil fertility. Simultaneously, the excessive utilization of chemical fertilizers to achieve high crop yields results in detrimental impacts on soil structure and fertility. To address these challenges, a sustainable agriculture system that ensures enhanced soil fertility and minimal ecological impact is imperative. Microbial composts, developed by incorporating characterized plant-growth-promoting bacteria or fungal strains into compost derived from agricultural waste, offer a promising solution. These biofertilizers, with selected microbial strains capable of thriving in compost, offer an eco-friendly, cost-effective, and sustainable alternative for agricultural practices. In this review article, we explore the potential of microbial composts as a viable strategy for improving plant growth and environmental safety. By harnessing the benefits of microorganisms in compost, we can pave the way for sustainable agriculture and foster a healthier relationship between soil, plants, and the environment.

7.
Ecotoxicol Environ Saf ; 264: 115422, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37660529

Agricultural soil pollution with potentially toxic trace elements (PTEs) has emerged as a significant environmental concern, jeopardizing food safety and human health. Although, conventional remediation approaches have been used for PTEs-contaminated soils treatment; however, these techniques are toxic, expensive, harmful to human health, and can lead to environmental contamination. Nano-enabled agriculture has gained significant attention as a sustainable approach to improve crop production and food security. Silicon nanomaterials (SiNMs) have emerged as a promising alternative for PTEs-contaminated soils remediation. SiNMs have unique characteristics, such as higher chemical reactivity, higher stability, greater surface area to volume ratio and smaller size that make them effective in removing PTEs from the environment. The review discusses the recent advancements and developments in SiNMs for the sustainable remediation of PTEs in agricultural soils. The article covers various synthesis methods, characterization techniques, and the potential mechanisms of SiNMs to alleviate PTEs toxicity in plant-soil systems. Additionally, we highlight the potential benefits and limitations of SiNMs and discusses future directions for research and development. Overall, the use of SiNMs for PTEs remediation offers a sustainable platform for the protection of agricultural soils and the environment.


Nanostructures , Trace Elements , Humans , Silicon , Soil , Agriculture
8.
Appl Microbiol Biotechnol ; 107(18): 5829-5842, 2023 Sep.
Article En | MEDLINE | ID: mdl-37450017

Reductive soil disinfestation (RSD) is an effective bioremediation technique to restructure the soil microbial community and eliminate soilborne phytopathogens. Yet we still lack a comprehensive understanding of the keystone taxa involved and their roles in ecosystem functioning in degraded soils treated by RSD. In this study, the bacteriome network structure in RSD-treated soil and the subsequent cultivation process were explored. As a result, bacterial communities in RSD-treated soil developed more complex topologies and stable co-occurrence patterns. The richness and diversity of keystone taxa were higher in the RSD group (module hub: 0.57%; connector: 23.98%) than in the Control group (module hub: 0.16%; connector: 19.34%). The restoration of keystone taxa in RSD-treated soil was significantly (P < 0.01) correlated with soil pH, total organic carbon, and total nitrogen. Moreover, a strong negative correlation (r = -0.712; P < 0.01) was found between keystone taxa richness and Fusarium abundance. Our results suggest that keystone taxa involved in the RSD network structure are capable of maintaining a flexible generalist mode of metabolism, namely with respect to nitrogen fixation, methylotrophy, and methanotrophy. Furthermore, distinct network modules composed by numerous anti-pathogen agents were formed in RSD-treated soil; i.e., the genera Hydrogenispora, Azotobacter, Sphingomonas, and Clostridium_8 under the soil treatment stage, and the genera Anaerolinea and Pseudarthrobacter under the plant cultivation stage. The study provides novel insights into the association between fungistasis and keystone or sensitive taxa in RSD-treated soil, with significant implications for comprehending the mechanisms of RSD. KEY POINTS: • RSD enhanced bacteriome network stability and restored keystone taxa. • Keystone taxa richness was negatively correlated with Fusarium abundance. • Distinct sensitive OTUs and modules were formed in RSD soil.


Fusarium , Microbiota , Soil/chemistry , Bacteria/metabolism , Firmicutes , Soil Microbiology
9.
Front Microbiol ; 14: 1146207, 2023.
Article En | MEDLINE | ID: mdl-37032903

In agricultural practice, reductive soil disinfestation (RSD) is an effective method for eliminating soil-borne pathogens that depends heavily on carbon source. However, knowledge regarding the assembly of soil microbial communities in RDS-treated soils amended with different carbon sources after continuous crop cultivation is still not well-characterized. RSD treatments were performed on greenhouse soil with six different carbon sources (ethanol, glucose, alfalfa, wheat bran, rice bran, and sugarcane residue), which have different C:N ratios (Org C/N) and easily oxidized carbon contents (Org EOC). After RSD, two consecutive seasons of pepper pot experiments were conducted. Then, the effects of carbon source property, crop cultivation, and soil chemical property on soil microbial community reestablishment, pathogen reproduction, and crop performance were investigated in the RSD-cropping system. Variation partition analysis indicated that carbon source property, crop cultivation, and soil chemical property explained 66.2 and 39.0% of bacterial and fungal community variation, respectively. Specifically, Mantel tests showed that Org C/N, crop cultivation, soil available phosphorus and potassium were the most important factors shaping bacterial community composition, while Org C/N, Org EOC, and crop cultivation were the most important factors shaping fungal community composition. After two planting seasons, the number of cultivable Fusarium was positively correlated with Org EOC, and negatively correlated with soil total organic carbon, Fungal Chao1, and Fungal PC1. Crop yield of complex-carbon soils (Al, Wh, Ri and Su) was negatively affected by Org C/N after the first season, and it was highest in Al, and lower in Et and Su after the second season. Overall, Org EOC and Org C/N of carbon source were vitally important for soil microbe reestablishment, Fusarium reproduction and crop performance. Our findings further broaden the important role of carbon source in the RSD-cropping system, and provide a theoretical basis for organic carbon selection in RSD practice.

10.
J Environ Manage ; 337: 117549, 2023 Jul 01.
Article En | MEDLINE | ID: mdl-36934502

Fertilization has become one of the most important ways to recycle perishable waste. In order to reveal the effect of the nutrient of the perishable waste primary products on the market and the possible impact of their application, 136 perishable waste primary products were sampled in nine cities in Zhejiang province, China. The result shows that these products have high nutrient content (average nutrient content was 5.00%). However, the conductivity (7.19 mS/cm) total soluble salt content (12.07%), and grease content (5.99%) were too high. The excessive salt and grease may cause harm to soil and crops, and become the main limiting factors for the fertilizer utilization of perishable waste. Heavy metal content of most of the samples met current commercial organic fertilizer standards, except that lead and chromium content of some samples exceeded the limit standard. Toluene, ethylbenzene, m & p-xylene were generally detected in the samples. These toxic and harmful substances have brought risks to the safe use of perishable waste into fertilizers.


Metals, Heavy , Waste Products , Fertilizers/analysis , Soil/chemistry , Risk Assessment , Crops, Agricultural , Metals, Heavy/analysis
11.
J Hazard Mater ; 451: 131201, 2023 06 05.
Article En | MEDLINE | ID: mdl-36931215

The strategies to relieve antibiotic resistance genes (ARGs) pollution are urgently needed. Fermentation broth from fruit and vegetable waste (FFVW), an agricultural amendment, exhibits a remarkable capacity to reduce ARG pollution; however, the underlying mechanism of this effect remains unclear. We performed microcosm experiments to reappear the phenomenon of FFVW-driven reduction in ARGs. Moderate-level FFVW reduced gene resistance to sulfonamide (41.2 %), macrolide-lincosamide-streptogramin (MLS) (47.2 %), chloramphenicol (63.2 %), and tetracycline (61.4 %). Binning and network analyses revealed that Actinobacteria comprise the primary hosts of ARGs in arable soil, and FFVW substantially inhibited the growth and metabolic activity of these organisms. Moreover, tetracycline and MLS production was partially/completely inhibited by FFVW, further reducing the transfer frequency by 52.9-86.1 % and 46.6-66.6 % in the intragenic and intergenic mating systems, respectively. Furthermore, the expression of genes related to conjugation pairing and plasmid transfer was downregulated. Thus, FFVW effectively reduces ARG pollution by inhibiting Actinobacteria proliferation, thereby reducing selective pressure and restricting horizontal gene transfer. Our findings highlight the important underlying mechanisms of FFVW involved in ARG reduction, supporting its use in arable soil.


Anti-Bacterial Agents , Vegetables , Anti-Bacterial Agents/pharmacology , Soil , Fermentation , Fruit , Genes, Bacterial , Tetracycline/pharmacology , Drug Resistance, Microbial/genetics , Bacteria/genetics , Soil Microbiology
12.
Toxics ; 10(11)2022 Oct 27.
Article En | MEDLINE | ID: mdl-36355937

The expected typical gley moist paddy soil was collected in Zhejiang Province, China, and conventional (XS 134 and JH 218) and varieties of hybrid (YY 538 and CY 84) rices were used for a pot experiment. The effects of exogenous heavy metals lead (Pb) and chromium (Cr) on rice growth and the accumulation of heavy metals in the grains were studied. The results show that heavy metal concentrations in soil and rice grains have significant correlations, and Pb and Cr significantly (p < 0.05) inhibited the rice growth (plant height and panicle weight). The potential ecological hazard index (RI) of heavy metals in the soil was 4.88−6.76, which belongs to the grade of "slight ecological hazard", and Pb provides a larger potential ecological hazard than Cr in the studied region. The thresholds for potential health risks and ecological risks for Pb and Cr were lower than the "Control Standards for Soil Pollution Risk of Agricultural Land (Trial)" (GB15618-2018, China). This work provides the basis for soil pollution control for Pb and Cr and the selection of rice cultivars from Pb and Cr accumulated soils.

13.
J Environ Manage ; 319: 115694, 2022 Oct 01.
Article En | MEDLINE | ID: mdl-35841778

The application of additives to regulate the microbial functional composition during composting has attracted much research attention. However, little is known about the succession and role of the fungal community in the laboratory-scale composting of vegetable waste supplemented with pig manure and microbial agents. The purpose of this study was to identify effective additives for improving vegetable waste composting performance and product quality, and to analyze the microbial community succession during composting. The results showed that the combined addition of pig manure and microbial agents (T2 treatment) accelerated the pile temperature increase, enhanced total organic carbon degradation (23.36%), and promoted the maturation of the compost. Furthermore, the T2 treatment increased the activities of most enzymes, reshaped the microbial community, and reduced the relative abundance of potential animal (1.60%) and plant (0.095%) pathogens. The relative abundance of Firmicutes (71.23%) increased with the combined addition of pig manure and microbial agents in the thermophilic stage. In the middle and late stages, Saccharomonospora, Aspergillus, and Thermomyces, which were related to C/N and total phosphorus, were enriched in the T2 treatment. Network analysis demonstrated that the complexity and stability of the fungal network were more evidently increased in the T2 treatment, and Saccharomonospora, Aspergillus, and Microascus were identified as keystone taxa. The keystone taxa associated with extracellular enzymes contributed significantly to compost maturation. These results provide a reference for the application of additives to improve compost safety in pilot-scale composting.


Composting , Microbiota , Mycobiome , Animals , Manure/microbiology , Soil , Swine , Vegetables
14.
Environ Res ; 214(Pt 1): 113835, 2022 11.
Article En | MEDLINE | ID: mdl-35810807

The issue of growing increase of antibiotic resistance genes (ARGs) in manure-fertilized soil needs urgently addressing. In this study, fermentation broth from fruit and vegetable waste was prepared to reduce ARG abundance in swine manure-fertilized soils. With a six-month field experiment, we found that swine manure-fertilized soil had significantly higher ARG abundance than soil applied with chemical fertilizer. As expected, the homemade fermentation broth significantly reduced ARG abundance in swine manure-fertilized soil, possibly through the decrease of abundance of Actinomyces, in which there was a 48.0%, 51.9%, and 66.7% decrease in the abundance of Nocardioides, Streptomyces, and Nonomuraea, respectively. With the bacteriostatic experiment, we observed that fermentation broth (5 mL/L) significantly inhibited the growth and metabolism in Actinomycetes spp. and Nocardioides sp., in terms of ATPase and PDH activity. These findings confirmed that the inhibition of Actinobacteria, some of the most dominant ARG hosts, was one of the main mechanisms responsible for the decrease in ARG abundance in fermentation broth-treated soil. This study provides field-scale evidence of a feasible strategy for controlling farmland ARG pollution, which is of utmost importance for soil health in the context of sustainable agriculture.


Manure , Soil , Animals , Anti-Bacterial Agents , Drug Resistance, Microbial , Fermentation , Fruit , Genes, Bacterial , Soil Microbiology , Swine , Vegetables
15.
J Hazard Mater ; 437: 129356, 2022 09 05.
Article En | MEDLINE | ID: mdl-35728317

Concerns regarding biological risk in environment have garnered increasing attention. Manure has been believed to be a significant source of antibiotic resistance genes (ARGs) in agricultural soil. Nevertheless, the profile of microbial contamination including ARGs, virulence factor genes (VFGs) and human bacterial pathogens (HBPs) in different manure-amended soils remain largely unknown. Here, we conducted the systematic metagenome-based study to explore changes in resistome, VFGs and HBPs in soils treated by frequently-used manures. The results revealed that many manure-borne ARGs, VFGs, and HBPs could be spreaded into soils, and their diversity and abundance were significantly different among chemical fertilizer, pig manure, chicken manure, cow dung and silkworm excrement application. A total of 157 potential HBPs accounting about 1.33% of total bacteria were detected. The main ARGs transferred from manures to soil conferred resistance to vancomycin and macrolide-lincosamide-streptogramin. The series analysis revealed positive co-occurrence patterns of ARGs-HBPs, VFGs-HBPs and ARGs-VFGs. Microbial contamination were more serious in pig manure and silkworm excrement sample than in the other samples, implying the usage of these two manures increased the risk of HBPs and dissemination of ARGs. This study confirmed the prevalence and discrepancy of resistome, VFGs and HBPs in different manure-amended soils.


Manure , Soil , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Cattle , Drug Resistance, Microbial/genetics , Female , Genes, Bacterial , Humans , Manure/microbiology , Soil Microbiology , Swine , Virulence Factors/genetics
16.
Microbiol Res ; 255: 126922, 2021 Nov 18.
Article En | MEDLINE | ID: mdl-34839169

With the increasing demand for high quality and environmentally safe or green food, Biological Control Agents (BCAs) are playing critical roles in green agriculture, which in turn has paved the way for the requirement of effective, appropriate microbial antagonists. In this study, Mucor moelleri AA1 was isolated and investigated for its growth promotion and antagonism against Athelia rolfsii and Colletotrichum gloeosporiodes. The results showed a high antagonistic activity of M. moelleri against A. rolfsii and C. gloeosporiodes with percentage inhibitions of 73 % and 86 % respectively using the dual plate method, and the same antagonistic activity was also observed in liquid cocultures. A pot study analysis showed significant suppression of the diseases as well as growth promotion on tomato. Scanning electron microscopy (SEM) indicated that M. moelleri inhibited the growth of mycelium and the production of web-like materials. Based on headspace-solid phase microextraction (HS-SPME) analysis, microbial volatile compounds were determined, which were mainly aromatic compounds and alkaloids. Also, several antagonistic enzymes, such as ß-1, 3- glucanase, proteases, catalase and ACC deaminase as well as the phytohormone IAA, were found to be produced by M. moelleri. Overall, these results combine to make M. moelleri a good prospective candidate for biological control and as a plant growth-promoting agent. The present study appears to be the first report identifying M. moelleri as a biological control agent.

17.
Environ Sci Technol ; 55(21): 14732-14745, 2021 11 02.
Article En | MEDLINE | ID: mdl-34689552

Composting alters manure-derived antibiotic resistance genes (ARGs) to a certain extent, which is largely dependent upon the composting phase, manure type, microbial phylogeny, and physicochemical properties. However, little is known about how these determinants influence the fate and dynamics of ARGs as well as the mechanisms underlying the ecological process of ARGs during composting. Here, we investigated the temporal patterns of ARGs and their correlations with a series of physicochemical, genetic, and microbial properties during pilot-scale composting of chicken, maggot, bovine, and swine manure. We detected 237 ARGs, 71 of which were co-occurring across all four composting processes and accounted for >80% of the sum of resistome abundance. In support of this ARG co-occurrence, variance partition analyses demonstrated that the manure type explained less resistome variations (5.6%) than the composting phase (21.6%). During the phase-driven resistome dynamics, ARGs showed divergent variations in abundance, and certain beta-lactams and multidrug ARGs were consistently enriched across multiple manure composting processes. Correlation analyses all led to the conclusion that the divergent ARG variations during composting were attributable to the unequal effects of physicochemical properties, mobile elements, and succession of indigenous microbiota, whereas antibiotic residues' effects were marginal. Ultimately, this study determines the relative importance of various key determinants in the phase-driven divergence of ARGs during multiple manure composting processes and demonstrates a clear need to evaluate risks posed by enriched ARGs toward their receiving environments.


Composting , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Drug Resistance, Microbial , Genes, Bacterial , Manure , Swine
18.
Plant Cell Environ ; 44(5): 1596-1610, 2021 05.
Article En | MEDLINE | ID: mdl-33547690

Nitrogen (N) influences a myriad of physiological processes while its effects on plant defences and the underlying mechanisms are largely unknown. Here, the interaction between tomato and pathogens was examined under four N regimes (sole NO3- or mixed NO3- /NH4+ of total 1 and 7 mM N, denoting low and high N regimes, respectively) followed by inoculation with two bacterial pathogens, Pseudomonas syringae and Ralstonia solanacearum. Tomato immunity against both pathogens was generally higher under low N as well as NO3- as the sole N source. The disease susceptibility was reduced by silencing N metabolism genes such as NR, NiR and Fd-GOGAT, while increased in NiR1-overexpressed plants. Further studies demonstrated that the N-modulated defence was dependent on the salicylic acid (SA) defence pathway. Low N as well as the silencing of N metabolism genes increased the SA levels and transcripts of its maker genes, and low N-enhanced defence was blocked in NahG transgenic tomato plants that do not accumulate SA, while exogenous SA application attenuated the susceptibility of OE-NiR1. The study provides insights into the mechanisms of how nitrogen fertilization and metabolism affect plant immunity in tomato, which might be useful for designing effective agronomic strategies for the management of N supply.


Nitrogen/metabolism , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Leaves/microbiology , Plant Roots/microbiology , Solanum lycopersicum/immunology , Solanum lycopersicum/microbiology , Cyclopentanes/metabolism , Disease Resistance/genetics , Gene Expression Regulation, Plant , Gene Silencing , Genes, Plant , Solanum lycopersicum/genetics , Oxylipins/metabolism , Plant Diseases/genetics , Plant Leaves/genetics , Plant Roots/genetics , Plants, Genetically Modified , Pseudomonas syringae/pathogenicity , Pseudomonas syringae/physiology , Ralstonia solanacearum/pathogenicity , Ralstonia solanacearum/physiology , Salicylic Acid/metabolism
19.
Sci Total Environ ; 776: 145864, 2021 Jul 01.
Article En | MEDLINE | ID: mdl-33639462

An experiment was performed to study the inactivation effect of aerobic composting on heavy metals in maggot, pig and chicken manures. After composting, Cu mainly occurred in the oxidizable (OXI) fraction with a percentage distribution above 54%. Zn and Cd mainly existed in the bioavailable factor (BF), which has strong activity, with percentage distributions greater than 88.3% and 82.7%, respectively. Cr and Pb mainly existed in the stable residual (RES) fraction with a percentage distribution of approximately 50%. The aerobic composting process had a clear inactivation effect on heavy metals. For maggot manure compost in particular, the inactivation effects of Cu, Cr, Zn, Cd, and Pb were very good throughout the composting process, and the inactivation effect of Pb reached 54.42%. In addition, the process of biotransformation by housefly maggots promoted the conversion of fulvic acid (FA) to humic acid (HA) in pig manure, and the final increase in HA/FA after maggot manure composting was the largest among the different types of manure and beneficial to the inactivation of heavy metals. Compounds containing -CH3 and -CH2 groups were reduced, and aromatic structures were enhanced. Moreover, a maggot yield equivalent to 13.2% of the fresh pig manure was achieved during the process of biotransformation. The correlation analysis results showed that moisture content was an important factor affecting the inactivation rates of heavy metals in the three manure composts. Our results highlight that the process of biotransformation by housefly maggots can promote composting maturity and the inactivation of heavy metals, and produce a large amount of insect protein, yielding beneficial ecological and economic benefits.


Metals, Heavy , Soil , Animals , Biotransformation , Insect Proteins , Manure , Metals, Heavy/analysis , Swine
20.
Huan Jing Ke Xue ; 41(2): 1005-1012, 2020 Feb 08.
Article Zh | MEDLINE | ID: mdl-32608763

The widespread use of antibiotics in feed results in a large number of antibiotic residues in feces. Composting technology can degrade these residual antibiotics. A pilot-scale aerobic composting device was used to analyze the antibiotic residues and composting degradation characteristics of four types of feces (maggot manure, chicken manure, pig manure, and cow manure). Results showed that sulfonamides (SAs), fluoroquinolones (FQs), tetracycline (TCs), and macrolides (MAs) were the main antibiotics, and different type of feces had different dominant antibiotics. The contents of FQs and oxytetracycline (OTC) were none on the seventh day of the compost, and their degradation rates were the fastest. After composting, the degradation rate of doxycycline (DOX) in the four types of fecal composts was more than 85%. Meanwhile, the degradation rates of SAs in chicken, pig, and cow manure composts were also more than 80%, which was much lower in the one in maggot manure compost. MAs were only found in maggot manure, and the degradation rate was 70.79% after composting. Correlation analysis indicated that the water content and bulk density were the most important environmental factors affecting the degradation rates of antibiotics in the four types of fecal composts.


Anti-Bacterial Agents/analysis , Composting , Manure , Animals , Cattle , Feces , Female , Swine
...