Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
RSC Adv ; 14(43): 31837-31849, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39380651

ABSTRACT

In the current study, CO2 capturing ability of encapsulated ionic liquids (ENILs) i.e., tetramethylammonium chloride (TMACl), 1,3-dimethylimidazolium chloride (MIMCl), and methylpyridinium hexafluorophosphate (MPHP) encapsulated in self assembled belt[14]pyridine (BP) has been studied. The results show that strong van der Waals forces are involved in capturing of CO2 by these encapsulated ionic liquids. Strong attractive forces arise from synergistic effect of ionic liquid (encapsulated) and atoms of belt. The interaction energies (E int) ranging from -12.54 to -18.64 kcal mol-1 reveal the capturing of CO2 by these systems as thermodynamically feasible process. The type and strength of interactions between CO2 and encapsulated ionic liquids is studied through QTAIM and NCI analyses. NCI analysis clearly shows that capturing of CO2 is assisted by van der Waals forces between CO2 and encapsulated ionic liquid complexes. The same feature is confirmed through QTAIM analysis as well. Natural bond orbital (NBO) analysis' results show the charge transfer between the fragments (encapsulated ionic liquids and CO2) which is validated further through electron density differences (EDD) analysis. Overall, transfer of charge towards CO2 from encapsulated ionic liquids is proved through the charge accumulation over CO2 (i.e., blue isosurfaces on CO2 molecules) through EDD analysis. The FMO analyses show the decrease in H-L gaps of encapsulated ionic liquids after CO2 capturing. The successful charge transfer and reduction in H-L gap indicate better interaction in the designed systems thus revealing these systems as a potential candidates for CO2 capturing. Overall, the best results for CO2 capture i.e., the highest interaction energy, the lowest H-L gap, and the strongest forces of interactions are shown by methylpyridinium hexafluorophosphate (MPHP) encapsulated belt[14]pyridine (BP-MPHP) system. This is due to the larger anion of methylpyridinium hexafluorophosphate as compared to the other two encapsulated ionic liquids with Cl- as anion which enables it to develop strong interactions with CO2. The designed belt[14]pyridine based encapsulated ionic liquid systems are promising prospects with better CO2 capture performance and represent a new entrant in the CO2 capturing systems.

2.
Food Chem ; 461: 140905, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39173260

ABSTRACT

Leveraging blackcurrant anthocyanin (BC) as an indicator and carboxymethyl cellulose (CMC), gum xanthan (GX), and citric acid (CA) as film fabricating materials, an innovative amine-responsive beef freshness intelligent film, known as CGC-BC, was successfully created. It was found that the physical characteristics, sensitivity to the biogenic amine reaction, and original color of the film were all highly influenced by the pH of the film-forming solutions. The film's freshness monitoring ability was assessed at 4, 25, and 35 °C, and various color changes were employed to monitor beef deterioration. ΔE values and the visual color difference of the low-concentration (SCG-BC-0.08 and SCG-BC-0.16) ammonia-sensitive indicator films demonstrated significant color changes than the high-concentration (SCG-BC-0.24 and SCG-BC-0.32) films. The films biodegradation (37.16 to 51.49%) ability was enhanced with increase in the proportions of BC. As the TVB-N and pH values of beef increased with the different temperatures and time and different color changes were observed from red to pink, black to brown, and yellow.


Subject(s)
Anthocyanins , Carboxymethylcellulose Sodium , Citric Acid , Color , Food Packaging , Polysaccharides, Bacterial , Polysaccharides, Bacterial/chemistry , Cattle , Anthocyanins/chemistry , Carboxymethylcellulose Sodium/chemistry , Animals , Citric Acid/chemistry , Food Packaging/instrumentation , Food Preservation/instrumentation , Food Preservation/methods , Ribes/chemistry , Meat/analysis , Hydrogen-Ion Concentration
3.
Commun Med (Lond) ; 4(1): 152, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107484

ABSTRACT

BACKGROUND: Thyroid hormones (TH) regulate the basal metabolic rate through their receptors THRα and THRß. TH activates lipid metabolism via THRß, however, an excess amount of TH can lead to tachycardia, bone loss, and muscle wasting through THRα. In recent years, TH analogs that selectively bind to THRß have gained attention as new agents for treating dyslipidemia and obesity, which continue to pose major challenges to public health worldwide. METHODS: We developed a TH analog, ZTA-261, by modifying the existing THRß-selective agonists GC-1 and GC-24. To determine the THRß-selectivity of ZTA-261, an in vitro radiolabeled TH displacement assay was conducted. ZTA-261 was intraperitoneally injected into a mouse model of high-fat diet-induced obesity, and its effectiveness in reducing body weight and visceral fat, and improving lipid metabolism was assessed. In addition, its toxicity in the liver, heart, and bone was evaluated. RESULTS: ZTA-261 is more selective towards THRß than GC-1. Although ZTA-261 is less effective in reducing body weight and visceral fat than GC-1, it is as effective as GC-1 in reducing the levels of serum and liver lipids. These effects are mediated by the same pathway as that of T3, a natural TH, as evidenced by similar changes in the expression of TH-induced and lipid metabolism-related genes. The bone, cardiac, and hepatotoxicity of ZTA-261 are significantly lower than those of GC-1. CONCLUSIONS: ZTA-261, a highly selective and less toxic THRß agonist, has the potential to be used as a drug for treating diseases related to lipid metabolism.


Nearly 10% of the world's population suffers from obesity or is overweight. These conditions are closely related to disorders of lipid metabolism, posing significant challenges to individuals and healthcare systems. Thyroid hormone (TH) activates metabolism by binding to specific protein partners, called TH receptors (THRs). There are two types of THRs, THRα and THRß. THRß activates lipid metabolism; however, THRα negatively affects the heart, bone, and muscle when TH is in excess. This study developed a drug called ZTA-261 that selectively binds to THRß. Its administration to mice with induced obesity from a high-fat diet resulted in reduced body fat without any apparent toxicity. Therefore, ZTA-261 is a promising candidate to improve lipid metabolism and address the obesity epidemic.

4.
Sci Rep ; 14(1): 19068, 2024 08 17.
Article in English | MEDLINE | ID: mdl-39154101

ABSTRACT

Herein we have reported a fluorescent probe (MB-M) based on MB derivative for Cu2+ ions detection. The probe was well characterized by 1H NMR, 13C NMR and HR-MS spectrum. Probe MB-M showed naked-eyes recognition to Cu2+ as color change from colorless to indigo. The probe exhibited promising features such as high fluorescence and UV-vis selectivity, fast response (5 mint), workable at pH 2-7, and low limit of detection (LOD = 0.33 µM). Probe MB-M was also used for Cu2+ ions imaging in HepG-2 cells and detection in daily life (Test Strip and lake water). Moreover, non-covalent interaction (NCI) and quantum theory of atoms in molecules (QTAIM) analysis were used to study the interaction between MB-M and Cu2+ ions. By examining the electronic characteristics of the complex using natural bond orbital (NBO), electron density difference (EDD), and frontier molecular orbital (FMO) analysis, the sensitivity of MB-M towards Cu2+ ions were investigated. The results illustrated that the interactions between MB-M and Cu2+ ions involved chemisorption.


Subject(s)
Copper , Fluorescent Dyes , Copper/analysis , Copper/chemistry , Fluorescent Dyes/chemistry , Humans , Hep G2 Cells , Optical Imaging/methods , Ions , Spectrometry, Fluorescence/methods , Limit of Detection
5.
BMC Med Genomics ; 17(1): 176, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956580

ABSTRACT

BACKGROUND: Intellectual disability (ID) is a neurodevelopmental condition affecting around 2% of children and young adults worldwide, characterized by deficits in intellectual functioning and adaptive behavior. Genetic factors contribute to the development of ID phenotypes, including mutations and structural changes in chromosomes. Pathogenic variants in the HCFC1 gene cause X-linked mental retardation syndrome, also known as Siderius type X-linked mental retardation. The MN1 gene is necessary for palate development, and mutations in this gene result in a genetic condition called CEBALID syndrome. METHODS: Exome sequencing was used to identify the disease-causing variants in two affected families, A and B, from various regions of Pakistan. Affected individuals in these two families presented ID, developmental delay, and behavioral abnormalities. The validation and co-segregation analysis of the filtered variant was carried out using Sanger sequencing. RESULTS: In an X-linked family A, a novel hemizygous missense variant (c.5705G > A; p.Ser1902Asn) in the HCFC1 gene (NM_005334.3) was identified, while in family B exome sequencing revealed a heterozygous nonsense variant (c.3680 G > A; p. Trp1227Ter) in exon-1 of the MN1 gene (NM_032581.4). Sanger sequencing confirmed the segregation of these variants with ID in each family. CONCLUSIONS: The investigation of two Pakistani families revealed pathogenic genetic variants in the HCFC1 and MN1 genes, which cause ID and expand the mutational spectrum of these genes.


Subject(s)
Host Cell Factor C1 , Intellectual Disability , Pedigree , Humans , Pakistan , Male , Intellectual Disability/genetics , Female , Host Cell Factor C1/genetics , Tumor Suppressor Proteins/genetics , Trans-Activators/genetics , Child , Exome Sequencing , Child, Preschool
6.
Front Pharmacol ; 15: 1370833, 2024.
Article in English | MEDLINE | ID: mdl-38887556

ABSTRACT

Androgenic alopecia (AGA) affects both men and women worldwide. New blood vessel formation can restore blood supply and stimulate the hair regrowth cycle. Recently, our group reported that 2-deoxy-D-ribose (2dDR) is 80%-90% as effective as VEGF in the stimulation of neovascularization in in vitro models and in a chick bioassay. In this study, we aimed to assess the effect of 2dDR on hair growth. We prepared an alginate gel containing 2dDR, polypropylene glycol, and phenoxyethanol. AGA was developed in C57BL6 mice by intraperitoneally injecting testosterone (TE). A dihydrotestosterone (DHT)-treated group was used as a negative control, a minoxidil group was used as a positive control, and we included groups treated with 2dDR gel and a combination of 2dDR and minoxidil. Each treatment was applied for 20 days. Both groups treated with 2dDR gel and minoxidil stimulated the morphogenesis of hair follicles. H&E-stained skin sections of C57BL/6 mice demonstrated an increase in length, diameter, hair follicle density, anagen/telogen ratio, diameter of hair follicles, area of the hair bulb covered in melanin, and an increase in the number of blood vessels. Masson's trichrome staining showed an increase in the area of the hair bulb covered in melanin. The effects of the FDA-approved drug (minoxidil) on hair growth were similar to those of 2dDR (80%-90%). No significant benefit were observed by applying a combination of minoxidil with 2dDR. We conclude that 2dDR gel has potential for the treatment of androgenic alopecia and possibly other alopecia conditions where stimulation of hair regrowth is desirable, such as after chemotherapy. The mechanism of activity of 2dDR remains to be established.

7.
Biotechnol Bioeng ; 121(9): 2767-2779, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38837342

ABSTRACT

Injectable, tissue mimetic, bioactive, and biodegradable hydrogels offer less invasive regeneration and repair of tissues. The monitoring swelling and in vitro degradation capacities of hydrogels are highly important for drug delivery and tissue regeneration processes. Bioactivity of bone tissue engineered constructs in terms of mineralized apatite formation capacity is also pivotal. We have previously reported in situ forming chitosan-based injectable hydrogels integrated with hydroxyapatite and heparin for bone regeneration, promoting angiogenesis. These hydrogels were functionalized by glycerol and pH to improve their mechano-structural properties. In the present study, functionalized hybrid hydrogels were investigated for their swelling, in vitro degradation, and bioactivity performances. Hydrogels have degraded gradually in phosphate-buffered saline (PBS) with and without lysozyme enzyme. The percentage weight loss of hydrogels and their morphological and chemical properties, and pH of media were analyzed. The swelling ratio of hydrogels (55%-68%(wt), 6 h of equilibrium) indicated a high degree of cross-linking, can be suitable for controlled drug release. Hydrogels have gradually degraded reaching to 60%-70% (wt%) in 42 days in the presence and absence of lysozyme, respectively. Simulated body fluid (SBF)-treated hydrogels containing hydroxyapatite-induced needle-like carbonated-apatite mineralization was further enhanced by heparin content significantly.


Subject(s)
Bone Regeneration , Chitosan , Hydrogels , Chitosan/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Bone Regeneration/drug effects , Drug Delivery Systems , Durapatite/chemistry , Durapatite/pharmacology , Muramidase/chemistry , Muramidase/pharmacology , Hydrogen-Ion Concentration , Biocompatible Materials/chemistry , Heparin/chemistry , Heparin/pharmacology
8.
Int J Biol Macromol ; 271(Pt 2): 132443, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761913

ABSTRACT

Metal-organic frameworks (MOFs)-based therapy opens a new area for antibiotic-drug free infections treatment. In the present study, chitosan membranes (CS) loaded with two concentrations of copper-MOF 10 mg/20 ml (Cu-MOF10/CS) & 20 mg/20 ml (Cu-MOF20/CS) were prepared by a simple lyophilization procedure. FTIR spectra of Cu-MOF10/CS and Cu-MOF20/CS dressings confirmed absence of any undesirable chemical changes after loading Cu-MOF. The SEM images of the synthesized materials (CS, Cu-MOF10/CS & Cu-MOF20/CS) showed interconnected porous structures. Cytocompatibility of the materials was confirmed by fibroblasts cells culturing and the materials were hemocompatible, with blood clotting index <5 %. Cu-MOF20/CS showed comparatively higher effective antibacterial activity against the tested strains; E. coli (149.2 %), P. aeruginosa (165 %) S. aureus (117.8 %) and MRSA (142 %) as compared to Amikacin, CS and Cu-MOF10/CS membranes. Similarly, Cu-MOF20/CS dressing significantly eradicated the biofilms; P. aeruginosa (37 %) and MRSA (52 %) respectively. In full thickness infected wound rat model, on day 23, Cu-MOF10/CS and Cu-MOF20/CS promoted wound healing up to 87.7 % and 82 % respectively. H&E staining of wounded tissues treated with Cu-MOF10/CS & Cu-MOF20/CS demonstrated enhanced neovascularization and re-epithelization along-with reduced inflammation, while trichrome staining exhibited increased collagen deposition. Overall, this study declares Cu-MOFs loaded chitosan dressings a multifunctional platform for the healing of infected wounds.


Subject(s)
Anti-Bacterial Agents , Bandages , Biofilms , Chitosan , Copper , Freeze Drying , Metal-Organic Frameworks , Pseudomonas aeruginosa , Wound Healing , Animals , Chitosan/chemistry , Chitosan/pharmacology , Wound Healing/drug effects , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Rats , Pseudomonas aeruginosa/drug effects , Porosity , Copper/chemistry , Copper/pharmacology , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas Infections/therapy , Male , Angiogenesis Inducing Agents/pharmacology , Angiogenesis Inducing Agents/chemistry , Wound Infection/drug therapy , Wound Infection/microbiology
9.
Int J Biol Macromol ; 267(Pt 1): 129256, 2024 May.
Article in English | MEDLINE | ID: mdl-38493823

ABSTRACT

In the present study, the commercially available three different fabrics cotton, nylon and cotton/nylon were modified by chitosan and silver nanoparticles using a crosslinker triethyl orthoformate (TEOF). Resulted cotton­silver (Ag-Cs-Cot), nylon­silver (Ag-Cs-Nyl) and cotton-nylon silver (Ag-Cs-Cot-Nyl) fabrics showed significant anti-bacterial activity even after 50 washing cycles. Silver nanoparticles were prepared by reducing silver nitrate through sodium borohydride at 0 °C. In FTIR spectra the peak at near 1650 cm-1 confirmed that TEOF mediated attachment of chitosan with fabrics (due to C=N) and the stretching of secondary amine near the 3375 cm-1 indicated the silver attachment to the amine group of the chitosan. In Scanning Electron Microscope (SEM) images smooth surfaces of fabrics without any damage by modification process were observed. The antibacterial activity was Analyzed by agar diffusion and broth dilution assays against Escherichia coli and Staphylococcus aureus bacterial strains and results showed 90% bacterial inhibition against E. coli and 89% bacterial inhibition against S. aureus. For testing the antibacterial durability, the modified fabrics were washed with non-ionic detergent (10g/l) for 15 minutes under aggressive stirring (100 rpm) at room temperature. The modified fabrics retained antibacterial activity over the 50 washing cycles. Finally, the commercial potential of cotton-silver fabric was evaluated by stitching it with the socks of football players and interestingly results showed that the modified fabric on the socks showed more than 90% bacterial inhibition as compared to the plain fabric after 70 minutes of playing activity.


Subject(s)
Anti-Bacterial Agents , Chitosan , Cotton Fiber , Escherichia coli , Metal Nanoparticles , Nylons , Silver , Staphylococcus aureus , Textiles , Chitosan/chemistry , Chitosan/pharmacology , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nylons/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Formates/chemistry
10.
Sci Rep ; 14(1): 4076, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38374325

ABSTRACT

Drug-to-drug interaction (DDIs) occurs when a patient consumes multiple drugs. Therefore, it is possible that any medication can influence other drugs' effectiveness. The drug-to-drug interactions are detected based on the interactions of chemical substructures, targets, pathways, and enzymes; therefore, machine learning (ML) and deep learning (DL) techniques are used to find the associated DDI events. The DL model, i.e., Convolutional Neural Network (CNN), is used to analyze the DDI. DDI is based on the 65 different drug-associated events, which is present in the drug bank database. Our model uses the inputs, which are chemical structures (i.e., smiles of drugs), enzymes, pathways, and the target of the drug. Therefore, for the multi-model CNN, we use several layers, activation functions, and features of drugs to achieve better accuracy as compared to traditional prediction algorithms. We perform different experiments on various hyperparameters. We have also carried out experiments on various iterations of drug features in different sets. Our Multi-Modal Convolutional Neural Network - Drug to Drug Interaction (MCNN-DDI) model achieved an accuracy of 90.00% and an AUPR of 94.78%. The results showed that a combination of the drug's features (i.e., chemical substructure, target, and enzyme) performs better in DDIs-associated events prediction than other features.


Subject(s)
Algorithms , Neural Networks, Computer , Humans , Drug Interactions , Machine Learning
11.
J Biomed Mater Res B Appl Biomater ; 112(1): e35344, 2024 01.
Article in English | MEDLINE | ID: mdl-37942693

ABSTRACT

The prolonged hypoxic conditions hinder chronic wounds from healing and lead to severe conditions such as delayed re-epithelialization and enhanced risk of infection. Multifunctional wound dressings are highly required to address the challenges of chronic wounds. Herein, we report polyurethane-coated sodium per carbonate-loaded chitosan hydrogel (CSPUO2 ) as a multifunctional dressing. The hydrogels (Control, CSPU, and CSPUO2 ) were prepared by freeze gelation method and the developed hydrogels showed high porosity, good absorption capacity, and adequate biodegradability. The release of oxygen from the CSPUO2 hydrogel was confirmed by the increase in pH and a sustained oxygen release was observed over the period of 21 days, due to polyurethane (CSPU) coating. The CSPUO2 hydrogel exhibited around 2-fold increased angiogenic potential in CAM assay when compared with Control and CSPU dressing. CSPUO2 also showed good level of antibacterial efficacy against E. coli and S. aureus. In a full-thickness rat wound model, CSPUO2 hydrogel considerably accelerated wound healing with exceptional re-epithelialization granulation tissue formation less inflammatory cells and improved skin architecture highlighting the tremendous therapeutic potential of this hydrogel when compared with control and CSPU to treat chronic diabetic and burn wounds.


Subject(s)
Chitosan , Rats , Animals , Chitosan/pharmacology , Hydrogels/pharmacology , Oxygen/pharmacology , Escherichia coli , Staphylococcus aureus , Angiogenesis , Polyurethanes , Wound Healing , Carbonates , Anti-Bacterial Agents/pharmacology
12.
Biometals ; 37(2): 447-459, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38085405

ABSTRACT

This study aimed to analyze the serum and salivary levels of copper (Cu), zinc (Zn), iron (Fe), chromium (Cr), manganese (Mn) and the Cu/Zn ratio and investigate the association between LOX gene variants (rs18800449 and rs2288393) and oral submucosal fibrosis (OSMF). A total of 250 subjects were included in the study: OSMF patients (n = 50), areca nut chewers without OSMF (n = 100) and controls (n = 100). Trace metals were measured using an atomic absorption spectrophotometer, while LOX gene variants were genotyped using the tetra primer amplification refractory mutation system (tetra ARMS) polymerase chain reaction (PCR) method. The results showed significant variations in serum and salivary Cu, Zn, Fe and Cr levels and serum Mn concentrations among the three groups (p < 0.0001). Serum Cu levels were significantly higher in OSMF patients, while serum Zn levels were significantly lower. Both serum and salivary Cu/Zn ratios demonstrated a statistically significant difference (p < 0.0001) and diagnostic potential to differentiate OSMF from chewers and controls. However, LOX gene variants did not show an association between OSMF and chewers, except for rs1800449 genotypes, which showed a significant and increased risk with the AA genotype in OSMF patients compared to controls (OR = 7.58; 95%CI 2.30-24.97). The study suggests that trace elements and genetic variants may impact the etiology of OSMF. The findings may aid in early diagnosis, suitable treatment, and as a prognostic indicator for disease progression.


Subject(s)
Oral Submucous Fibrosis , Trace Elements , Humans , Zinc/analysis , Oral Submucous Fibrosis/etiology , Trace Elements/analysis , Copper , Manganese , Chromium , Biomarkers
13.
Int J Biol Macromol ; 258(Pt 2): 128966, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38147970

ABSTRACT

This study focused on the development and evaluation of a stable emulsion system using rice starch, protein isolates, and bran oil as food ingredients. This was performed using a one-factor-at-a-time (OFAT) experimental strategy, which was subsequently refined using response surface modeling (RSM), and the emulsion was then characterized. The resulting quadratic polynomial model effectively captured all the responses, with regression coefficients exceeding 0.90. The emulsion activity index, emulsion stability index, and droplet size were 86.29 %, 93.44 %, and 100.59 nm, respectively. Turbidity was significantly influenced by particle size, with the double emulsion (sample B) exhibiting higher turbidity index (43,250.34 ± 0.046) than the reference sample (29,433.303 ± 0.018). The viscosity of the emulsion increased with the addition of the protein isolates. This inferred that a stable emulsion system derived from rice could serve a multifunctional purpose as carriers, fillers, and binders to enhance the physical, functional and sensory properties of foods.


Subject(s)
Oryza , Starch , Emulsions , Rice Bran Oil
14.
Am J Transl Res ; 15(9): 5574-5593, 2023.
Article in English | MEDLINE | ID: mdl-37854221

ABSTRACT

BACKGROUND: Kidney renal clear cell carcinoma (KIRC) is the most prevalent type of renal cell carcinoma (RCC), with a high incidence and mortality rate. There is a lack of sensitive biomarkers. Therefore, the discovery of accurate biomarkers for KIRC patients is critical to improve prognosis. METHODS: We determined hub genes and their associated pathways involved in the pathogenesis of KIRC from the GSE66272 dataset consisting of KIRC (n = 26) and corresponding control (n = 26) samples and later validated the expression and methylation level of the identified hub genes on The Cancer Genomic Atlas (TCGA) datasets and Human RCC 786-O and normal HK-2 cell lines through RNA sequencing (RNA-seq), Reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and targeted bisulfite sequencing (bisulfite-seq) analyses. RESULTS: The identified up-regulated four hub genes include TYROBP (Transmembrane Immune Signaling Adaptor TYROBP), PTPRC (Protein tyrosine phosphatase, receptor type, C), LCP2 (Lymphocyte cytosolic protein 2), and ITGB2 (Integrin Subunit Beta 2). Moreover, the higher expression of TYROBP, PTPRC, LCP2, and ITGB2 in KIRC patients insignificantly correlates with a poor prognosis in KIRC patients. In addition, hub genes were involved in the "Fc epsilon RI signaling pathway, asthma, natural cell killer mediated cytotoxicity, T cell receptor signaling pathway, primary immunodeficiency, Fc gamma R-mediated phagocytosis, malaria, leukocyte transendothelial migration, and legionellosis" pathways and associated with the infiltration level of CD8+ T, CD4+ T, and macrophage cells. CONCLUSION: Our integrated in silico and in vitro analysis identified important hub genes (TYROBP, PTPRC, LCP2, and ITGB2) involved in the pathogenesis of KIRC as possible diagnostic biomarkers.

15.
ACS Omega ; 8(39): 36493-36505, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37810689

ABSTRACT

Hydrogen is currently considered as the best alternative for traditional fuels due to its sustainable and ecofriendly nature. Additionally, hydrogen dissociation is a critical step in almost all hydrogenation reactions, which is crucial in industrial chemical production. A cost-effective and efficient catalyst with favorable activity for this step is highly desirable. Herein, transition-metal-doped fullerene (TM@C60) complexes are designed and investigated as single-atom catalysts for the hydrogen splitting process. Interaction energy analysis (Eint) is also carried out to demonstrate the stability of designed TM@C60 metallofullerenes, which reveals that all the designed complexes have higher thermodynamic stability. Furthermore, among all the studied metallofullerenes, the best catalytic efficiency for hydrogen dissociation is seen for the Sc@C60 catalyst Ea = 0.13 eV followed by the V@C60 catalyst Ea = 0.19 eV. The hydrogen activation and dissociation processes over TM@C60 metallofullerenes is further elaborated by analyzing charge transfer via the natural bond orbital and electron density difference analyses. Additionally, quantum theory of atoms in molecule analysis is carried out to investigate the nature of interatomic interactions between hydrogen molecules and TMs@C60 metallofullerenes. Overall, results of the current study declare that the Sc@C60 catalyst can act as a low cost, highly efficient, and noble metal-free single-atom catalyst to efficiently catalyze hydrogen dissociation reaction.

16.
Saudi J Biol Sci ; 30(10): 103813, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37811480

ABSTRACT

Background: COVID-19, caused by the SARS-CoV-2 virus, swiftly disseminated and was declared a pandemic. Variations in the ACE2 gene can impact the virus's ability to bind to ACE2 receptor, potentially influencing an individual's susceptibility and its association with COVID-19 severity across various populations. Methods: In total, 200 individuals were sequenced for the ACE2 gene and potential impact of the found variants on the ACE2 protein was assessed using in-silico tools. Results: Eight variations in the ACE2 gene were identified in 27 COVID-19 patients, of which four were missense and four were intronic variants. Three variants had a MAF of < 0.01 (c.251C > T, p.Pro86Leu; 15C > G, p.S5S; and c. 91 A > G, p.Lys31Glu). A missense variant, p.Pro86Leu, C > T, TT genotype, was found in 9 out of 200 individuals with an allele frequency of 0.045 and showed a significant association with COVID-19 (P = 0.003). The heterozygous allele of 15C > G, p.S5S, was found with a frequency of 0.02 (8/400) in eight patients, and its CG genotype showed a significant association with COVID-19 (P = 0.0068). The remaining identified variants were not associated with COVID-19 susceptibility. Conclusion: The ACE2 gene sequence in Pakistani individuals exhibited a low frequency of identified variants in COVID-19 patients. Overall, only two variants were associated with susceptibility to the disease, possibly contributing to Pakistan's lower COVID-19 mortality and infection rates. However, individuals carrying the mutant variant experienced more severe symptoms.

17.
Int J Biol Macromol ; 253(Pt 2): 126813, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37690650

ABSTRACT

Antibacterial, durable and smart cotton fabrics was developed using chitosan-based formulation. The cellulose was covalently cross-linked with chitosan using TEOF. The antibacterial activity of prepared smart fabrics and CS was studied against S. aureus and E. coli strains. The FTIR, SEM and XRD were employed to confirm the linkage of CS molecules with cellulose in cotton fabrics. The CS of 160 KDa extracted from shrimp shell showed the optimum antibacterial activity. The prominent asymmetric, symmetric alkyl CH peaks of CS were shifted to 2930 and 2845 (cm-1), respectively. Moreover, the shifted peaks at 1590 and 1400 (cm-1) indicate the CO stretching and NH2 bending bands of CS, respectively. This confirm the existence of new imine functional group that was generated after cross-linking of NH2 groups of CS. The SEM results showed more uniform morphology of TEOF cross-linked fabrics versus CS coated fabrics, which revealed a promising microbial growth inhibition activity. The TEOF as a cross-linker has been unveiled, showcasing the effectiveness of this innovative crosslinking approach. The fabric treated with cross-linked CS exhibited remarkable antibacterial properties that endured even after undergoing 30 washing cycles. These antibacterial textiles possess substantial commercial potential across a diverse range of industries.


Subject(s)
Chitosan , Cotton Fiber , Cellulose , Escherichia coli , Staphylococcus aureus , Textiles , Anti-Bacterial Agents/pharmacology
18.
Cleft Palate Craniofac J ; : 10556656231185218, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37431261

ABSTRACT

OBJECTIVES: This study investigated the association of MSX1 gene variants rs3821949 and rs12532 with nonsyndromic cleft lip and/or palate (NSCL/P) in the Pakistani population. DESIGN: Comparative cross-sectional study.Setting: Multicenter of CL/P malformation.Patients/Participants: Unrelated Non-Syndromic cleft Lip/Palate patients and healthy controls were enrolled. METHODS: One hundred (n = 100) subjects with NSCL/P and n = 50 unrelated healthy controls were enrolled in a multicenter comparative cross-sectional study. A tetra amplification refractory mutation system (ARMS) polymerase chain reaction (PCR) was performed to analyze MSXI gene single nucleotide variants (SNVs). RESULTS: Among 100 NSCL/P subjects, the majority were males (56%; male: female = 1.27: 1). Most of the cases (74%) had cleft lip and palate (CLP) compared to isolated clefts. Genotyping of MSX1 gene variant rs3821949 showed an increased risk for NSCL/P in various genetic models (P < 0.0001), and the A allele exhibited a more than 4-fold increased risk among cases (OR = 4.22: 95% CI = 2.16-8.22; P < 0.0001). Our investigation found no significant difference between the rs12532 variation and NSCL/P. CONCLUSION: Our study findings suggest that MSX1 gene variants may increase predisposition to NSCL/P in the Pakistani population. Further studies comprising large samples are required to identify the genetic aetiology of NSCL/P among our people.

19.
J Biomater Appl ; 38(2): 264-279, 2023 08.
Article in English | MEDLINE | ID: mdl-37477618

ABSTRACT

Developing multifunctional wound dressings capable of inducing rapid angiogenesis and with antibacterial activity would be attractive for diabetic and superficial wound healing. Hydrogels delivered from tubes have several desirable features -they are easy to apply, keep the wound moist, reduce the entry of microorganisms and avoid the need for painful dressing removal. Previously we reported that 2 deoxy-D-ribose (2dDR) delivered from a variety of dressings is capable of promoting wound healing by stimulating angiogenesis. Alginate hydrogels are an ideal vehicle to deliver a bioactive agent capable of promoting wound healing. In this study we developed and evaluated a tube hydrogel capable of delivering 2dDR with the aim of achieving a stable, convenient to administer and biologically effective wound treatment. Further, we included the stabilizer 2-phenoxy ethanol which provided antimicrobial activity. We synthesized hydrogels by the Green method, using simple mixing of sodium alginate, propylene glycol, 2-phenoxy ethanol and 2dDR in water. FTIR (Fourier transformation infrared spectroscopy) analysis confirmed an absence of undesirable chemical changes in the gel components, and SEM images of the freeze-dried gels showed porous structures. When 2dDR alginate gel (2dDR-SA hydrogel) was placed in PBS at 37°C, almost 92% of 2dDR was released within 7 days. When tested on cultured cells, 2dDR-SA hydrogels did not inhibit metabolic activity or proliferation, achieving up to 90 and 98% of control respectively over 7 days. 2dDR-SA hydrogel also showed anti-bacterial activity against E. coli, Pseudomonas aeruginosa, Staphylococcus aureus, and MRSA which was attributable to the stabilizer 2-phenoxy ethanol in the hydrogel. Stimulation of angiogenesis in the chorioallantoic membrane assay by 2dDR-SA hydrogel was found to be significant compared to the blank-SA. Wound healing potential was studied in full-thickness wounds in rats where acceleration of wound healing was seen. H&E staining of the wound tissue showed an enhanced number of blood vessels and re-epithelization, and a reduced number of inflammatory cells in 2dDR-SA treated animals compared to blank-hydrogels while Masson's trichrome staining showed increased collagen deposition. In summary we describe a convenient to apply hydrogel which has promise for use in a range of superficial skin wounds including applications in chronic wound care.


Subject(s)
Alginates , Ribose , Rats , Animals , Ribose/pharmacology , Alginates/chemistry , Escherichia coli , Wound Healing , Hydrogels/chemistry , Anti-Bacterial Agents/pharmacology , Ethanol
20.
J Biochem Mol Toxicol ; 37(10): e23433, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37394811

ABSTRACT

In this work, four fluorinated α, ß-unsaturated ketones named as 3-(3-bromophenyl)-1-(3-(trifluoromethyl)phenyl)prop-2-en-1-one (1), 3-(4-methoxyphenyl)-1-(3-(trifluoromethyl)phenyl) prop-2-en-1-one (2), 3-(3-bromo-5-chloro-2-hydroxyphenyl)-1-(3-(trifluoromethyl)phenyl) prop-2-en-1-one (3) and 3-(2-hydroxy-5-methylphenyl)-1-(3-(trifluoromethyl)phenyl)prop-2-en-1-one (4) were synthesized by Claisen-Schmidt reaction. The synthesized molecules were then characterized through ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FTIR), 1 H-NMR, 13 C-NMR, and mass spectrometry. The antioxidant potential, Urease inhibition, and interaction of compounds 1-4 with Salmon sperm DNA were experimentally explored and supported by molecular docking studies. The synthesized compounds strongly interact with SS-DNA through intercalative mode. It was noticed that compound 1 served as potent Urease inhibitor while compound 4 as better antioxidant among synthesized compounds. Moreover, frontier molecular orbitals, nonlinear optical (NLO) properties, natural bond orbitals, molecular electrostatic potential, natural population analysis, and photophysical properties of synthesized compounds were accomplished through density functional theory and time-dependent density functional theory. The band gap of all the compounds have been worked out using Taucs method. In addition to that, a precise comparative account of UV and IR data obtained from theoretical and experimental findings showed good agreement between theoretical and experimental data. The findings of our studies reflected that compounds 1-4 possess better NLO properties than Urea standard and the band gap data also reflected their prospective use towards optoelectronic materials. The better NLO behavior of compounds was attributed to the noncentrosymmetric structure of synthesized compounds.


Subject(s)
Antioxidants , Urease , Male , Humans , Models, Molecular , Molecular Docking Simulation , Spectroscopy, Fourier Transform Infrared , Semen , DNA , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL