Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Trends Immunol ; 45(6): 406-418, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38796404

ABSTRACT

Sarcoidosis is a chronic immune disease of unknown origin for which we still lack an immunological framework unifying causal agents, host factors, and natural history of disease. Here, we discuss the initial triggers of disease, and how myeloid cells drive granuloma formation and contribute to immunopathogenesis. We highlight recent advances in our understanding of innate immune memory and propose the hypothesis that maladaptive innate immune training connects previous environmental exposure to granuloma maintenance and expansion. Lastly, we consider how this hypothesis may open novel therapeutic avenues, while corticosteroids remain the front-line treatment.


Subject(s)
Immunity, Innate , Immunologic Memory , Sarcoidosis , Humans , Sarcoidosis/immunology , Immunity, Innate/immunology , Animals , Granuloma/immunology , Myeloid Cells/immunology , Trained Immunity
2.
Arch Cardiovasc Dis ; 116(4): 183-191, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36858909

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is associated with an inflammatory cytokine burst and a prothrombotic coagulopathy. Platelets may contribute to microthrombosis, and constitute a therapeutic target in COVID-19 therapy. AIM: To assess if platelet activation influences mortality in COVID-19. METHODS: We explored two cohorts of patients with COVID-19. Cohort A included 208 ambulatory and hospitalized patients with varying clinical severities and non-COVID patients as controls, in whom plasma concentrations of the soluble platelet activation biomarkers CD40 ligand (sCD40L) and P-selectin (sP-sel) were quantified within the first 48hours following hospitalization. Cohort B was a multicentre cohort of 2878 patients initially admitted to a medical ward. In both cohorts, the primary outcome was in-hospital mortality. RESULTS: In cohort A, median circulating concentrations of sCD40L and sP-sel were only increased in the 89 critical patients compared with non-COVID controls: sP-sel 40,059 (interquartile range 26,876-54,678)pg/mL; sCD40L 1914 (interquartile range 1410-2367)pg/mL (P<0.001 for both). A strong association existed between sP-sel concentration and in-hospital mortality (Kaplan-Meier log-rank P=0.004). However, in a Cox model considering biomarkers of immunothrombosis, sP-sel was no longer associated with mortality, in contrast to coagulopathy evaluated with D-dimer concentration (hazard ratio 4.86, 95% confidence interval 1.64-12.50). Moreover, in cohort B, a Cox model adjusted for co-morbidities suggested that prehospitalization antiplatelet agents had no significant impact on in-hospital mortality (hazard ratio 1.05, 95% CI 0.80-1.37; P=0.73). CONCLUSIONS: Although we observed an association between excessive biomarkers of platelet activation and in-hospital mortality, our findings rather suggest that coagulopathy is more central in driving disease progression, which may explain why prehospitalization antiplatelet drugs were not a protective factor against mortality in our multicentre cohort.


Subject(s)
COVID-19 , Platelet Aggregation Inhibitors , Humans , Platelet Aggregation Inhibitors/adverse effects , Platelet Activation , Inflammation/diagnosis , Inflammation/drug therapy , Biomarkers
3.
Nat Commun ; 13(1): 7254, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36434007

ABSTRACT

Host immunity to infection with SARS-CoV-2 is highly variable, dictating diverse clinical outcomes ranging from asymptomatic to severe disease and death. We previously reported reduced type I interferon in severe COVID-19 patients preceded clinical worsening. Further studies identified genetic mutations in loci of the TLR3- or TLR7-dependent interferon-I pathways, or neutralizing interferon-I autoantibodies as risk factors for development of COVID-19 pneumonia. Here we show in patient cohorts with different severities of COVID-19, that baseline plasma interferon α measures differ according to the immunoassay used, timing of sampling, the interferon α subtype measured, and the presence of autoantibodies. We also show a consistently reduced induction of interferon-I proteins in hospitalized COVID-19 patients upon immune stimulation, that is not associated with detectable neutralizing autoantibodies against interferon α or interferon ω. Intracellular proteomic analysis shows increased monocyte numbers in hospitalized COVID-19 patients but impaired interferon-I response after stimulation. We confirm this by ex vivo whole blood stimulation with interferon-I which induces transcriptomic responses associated with inflammation in hospitalized COVID-19 patients, that is not seen in controls or non-hospitalized moderate cases. These results may explain the dichotomy of the poor clinical response to interferon-I based treatments in late stage COVID-19, despite the importance of interferon-I in early acute infection and may guide alternative therapeutic strategies.


Subject(s)
COVID-19 , Interferon Type I , Humans , Proteomics , SARS-CoV-2 , Interferon-alpha , Antiviral Agents , Autoantibodies
4.
J Allergy Clin Immunol ; 149(2): 550-556.e2, 2022 02.
Article in English | MEDLINE | ID: mdl-34800432

ABSTRACT

BACKGROUND: Severe coronavirus disease 2019 (COVID-19) is characterized by impaired type I interferon activity and a state of hyperinflammation leading to acute respiratory distress syndrome. The complement system has recently emerged as a key player in triggering and maintaining the inflammatory state, but the role of this molecular cascade in severe COVID-19 is still poorly characterized. OBJECTIVE: We aimed at assessing the contribution of complement pathways at both the protein and transcriptomic levels. METHODS: To this end, we systematically assessed the RNA levels of 28 complement genes in the circulating whole blood of patients with COVID-19 and healthy controls, including genes of the alternative pathway, for which data remain scarce. RESULTS: We found differential expression of genes involved in the complement system, yet with various expression patterns: whereas patients displaying moderate disease had elevated expression of classical pathway genes, severe disease was associated with increased lectin and alternative pathway activation, which correlated with inflammation and coagulopathy markers. Additionally, properdin, a pivotal positive regulator of the alternative pathway, showed high RNA expression but was found at low protein concentrations in patients with a severe and critical disease, suggesting its deposition at the sites of complement activation. Notably, low properdin levels were significantly associated with the use of mechanical ventilation (area under the curve = 0.82; P = .002). CONCLUSION: This study sheds light on the role of the alternative pathway in severe COVID-19 and provides additional rationale for the testing of drugs inhibiting the alternative pathway of the complement system.


Subject(s)
COVID-19/immunology , Complement Activation/genetics , Complement Pathway, Alternative/genetics , Complement System Proteins/genetics , Disseminated Intravascular Coagulation/immunology , SARS-CoV-2/pathogenicity , COVID-19/genetics , COVID-19/therapy , COVID-19/virology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/immunology , Cardiovascular Diseases/therapy , Cardiovascular Diseases/virology , Case-Control Studies , Comorbidity , Complement System Proteins/immunology , Diabetes Mellitus/genetics , Diabetes Mellitus/immunology , Diabetes Mellitus/therapy , Diabetes Mellitus/virology , Disseminated Intravascular Coagulation/genetics , Disseminated Intravascular Coagulation/therapy , Disseminated Intravascular Coagulation/virology , Female , Gene Expression Regulation , Humans , Hypertension/genetics , Hypertension/immunology , Hypertension/therapy , Hypertension/virology , Lectins/genetics , Lectins/immunology , Male , Middle Aged , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/virology , Properdin/genetics , Properdin/immunology , Respiration, Artificial , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Severity of Illness Index
5.
Nat Immunol ; 22(11): 1428-1439, 2021 11.
Article in English | MEDLINE | ID: mdl-34471264

ABSTRACT

Coordinated local mucosal and systemic immune responses following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection either protect against coronavirus disease 2019 (COVID-19) pathologies or fail, leading to severe clinical outcomes. To understand this process, we performed an integrated analysis of SARS-CoV-2 spike-specific antibodies, cytokines, viral load and bacterial communities in paired nasopharyngeal swabs and plasma samples from a cohort of clinically distinct patients with COVID-19 during acute infection. Plasma viral load was associated with systemic inflammatory cytokines that were elevated in severe COVID-19, and also with spike-specific neutralizing antibodies. By contrast, nasopharyngeal viral load correlated with SARS-CoV-2 humoral responses but inversely with interferon responses, the latter associating with protective microbial communities. Potential pathogenic microorganisms, often implicated in secondary respiratory infections, were associated with mucosal inflammation and elevated in severe COVID-19. Our results demonstrate distinct tissue compartmentalization of SARS-CoV-2 immune responses and highlight a role for the nasopharyngeal microbiome in regulating local and systemic immunity that determines COVID-19 clinical outcomes.


Subject(s)
COVID-19/immunology , Microbiota/immunology , Nasopharynx/immunology , SARS-CoV-2/physiology , Acute Disease , Adolescent , Adult , Aged , Antibodies, Viral/blood , Cohort Studies , Female , Humans , Immunity, Humoral , Immunity, Mucosal , Interferons/blood , Male , Middle Aged , Nasopharynx/microbiology , Spike Glycoprotein, Coronavirus/immunology , Viral Load , Young Adult
6.
Sci Adv ; 7(34)2021 08.
Article in English | MEDLINE | ID: mdl-34407944

ABSTRACT

The COVID-19 pandemic has spread worldwide, yet the role of antiviral T cell immunity during infection and the contribution of immune checkpoints remain unclear. By prospectively following a cohort of 292 patients with melanoma, half of which treated with immune checkpoint inhibitors (ICIs), we identified 15 patients with acute or convalescent COVID-19 and investigated their transcriptomic, proteomic, and cellular profiles. We found that ICI treatment was not associated with severe COVID-19 and did not alter the induction of inflammatory and type I interferon responses. In-depth phenotyping demonstrated expansion of CD8 effector memory T cells, enhanced T cell activation, and impaired plasmablast induction in ICI-treated COVID-19 patients. The evaluation of specific adaptive immunity in convalescent patients showed higher spike (S), nucleoprotein (N), and membrane (M) antigen-specific T cell responses and similar induction of spike-specific antibody responses. Our findings provide evidence that ICI during COVID-19 enhanced T cell immunity without exacerbating inflammation.


Subject(s)
COVID-19/immunology , Immune Checkpoint Inhibitors/immunology , Melanoma/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adaptive Immunity/drug effects , Adaptive Immunity/immunology , Aged , Antibodies, Viral/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19/complications , COVID-19/virology , Female , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunologic Memory/drug effects , Immunologic Memory/immunology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Male , Melanoma/complications , Melanoma/drug therapy , Middle Aged , Prospective Studies , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/virology
7.
Ann Intensive Care ; 11(1): 113, 2021 Jul 17.
Article in English | MEDLINE | ID: mdl-34273008

ABSTRACT

BACKGROUND: Microvascular, arterial and venous thrombotic events have been largely described during severe coronavirus disease 19 (COVID-19). However, mechanisms underlying hemostasis dysregulation remain unclear. METHODS: We explored two independent cross-sectional cohorts to identify soluble markers and gene-expression signatures that discriminated COVID-19 severity and outcomes. RESULTS: We found that elevated soluble (s)P-selectin at admission was associated with disease severity. Elevated sP-selectin was predictive of intubation and death (ROC AUC = 0.67, p = 0.028 and AUC = 0.74, p = 0.0047, respectively). An optimal cutoff value was predictive of intubation with 66% negative predictive value (NPV) and 61% positive predictive value (PPV), and of death with 90% NPV and 55% PPV. An unbiased gene set enrichment analysis revealed that critically ill patients had increased expression of genes related to platelet activation. Hierarchical clustering identified ITG2AB, GP1BB, PPBP and SELPLG to be upregulated in a grade-dependent manner. ROC curve analysis for the prediction of intubation was significant for SELPLG and PPBP (AUC = 0.8, p = 0.046 for both). An optimal cutoff value for PBPP was predictive of intubation with 100% NPV and 45% PPV, and for SELPLG with 100% NPV and 50% PPV. CONCLUSION: We provide evidence that platelets contribute to COVID-19 severity. Plasma sP-selectin level was associated with severity and in-hospital mortality. Transcriptional analysis identified PPBP/CXCL7 and SELPLG as biomarkers for intubation. These findings provide additional evidence for platelet activation in driving critical COVID-19. Specific studies evaluating the performance of these biomarkers are required.

8.
Sci Rep ; 11(1): 11886, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34088975

ABSTRACT

The cholinergic system has been proposed as a potential regulator of COVID-19-induced hypercytokinemia. We investigated whole-blood expression of cholinergic system members and correlated it with COVID-19 severity. Patients with confirmed SARS-CoV-2 infection and healthy aged-matched controls were included in this non-interventional study. A whole blood sample was drawn between 9-11 days after symptoms onset, and peripheral leukocyte phenotyping, cytokines measurement, RNA expression and plasma viral load were determined. Additionally, whole-blood expression of native alpha-7 nicotinic subunit and its negative dominant duplicate (CHRFAM7A), choline acetyltransferase and acetylcholine esterase (AchE) were determined. Thirty-seven patients with COVID-19 (10 moderate, 11 severe and 16 with critical disease) and 14 controls were included. Expression of CHRFAM7A was significantly lower in critical COVID-19 patients compared to controls. COVID-19 patients not expressing CHRFAM7A had higher levels of CRP, more extended pulmonary lesions and displayed more pronounced lymphopenia. COVID-19 patients without CHRFAM7A expression also showed increased TNF pathway expression in whole blood. AchE was also expressed in 30 COVID-19 patients and in all controls. COVID-19-induced hypercytokinemia is associated with decreased expression of the pro-inflammatory dominant negative duplicate CHRFAM7A. Expression of this duplicate might be considered before targeting the cholinergic system in COVID-19 with nicotine.


Subject(s)
Acetylcholine/immunology , COVID-19/immunology , Inflammation/immunology , SARS-CoV-2/immunology , alpha7 Nicotinic Acetylcholine Receptor/immunology , Adult , Aged , COVID-19/genetics , Down-Regulation , Female , Humans , Inflammation/genetics , Male , Middle Aged , alpha7 Nicotinic Acetylcholine Receptor/genetics
9.
Arthritis Rheumatol ; 73(11): 1976-1985, 2021 11.
Article in English | MEDLINE | ID: mdl-33881229

ABSTRACT

OBJECTIVE: The clinical relevance of antiphospholipid antibodies (aPLs) in COVID-19 is controversial. This study was undertaken to investigate the prevalence and prognostic value of conventional and nonconventional aPLs in patients with COVID-19. METHODS: This was a multicenter, prospective observational study in a French cohort of patients hospitalized with suspected COVID-19. RESULTS: Two hundred forty-nine patients were hospitalized with suspected COVID-19, in whom COVID-19 was confirmed in 154 and not confirmed in 95. We found a significant increase in lupus anticoagulant (LAC) positivity among patients with COVID-19 compared to patients without COVID-19 (60.9% versus 23.7%; P < 0.001), while prevalence of conventional aPLs (IgG and IgM anti-ß2 -glycoprotein I and IgG and IgM anticardiolipin isotypes) and nonconventional aPLs (IgA isotype of anticardiolipin, IgA isotype of anti-ß2 -glycoprotein I, IgG and IgM isotypes of anti-phosphatidylserine/prothrombin, and IgG and IgM isotypes of antiprothrombin) was low in both groups. Patients with COVID-19 who were positive for LAC, as compared to patients with COVID-19 who were negative for LAC, had higher levels of fibrinogen (median 6.0 gm/liter [interquartile range 5.0-7.0] versus 5.3 gm/liter [interquartile range 4.3-6.4]; P = 0.028) and C-reactive protein (CRP) (median 115.5 mg/liter [interquartile range 66.0-204.8] versus 91.8 mg/liter [interquartile range 27.0-155.1]; P = 0.019). Univariate analysis did not show any association between LAC positivity and higher risks of venous thromboembolism (VTE) (odds ratio 1.02 [95% confidence interval 0.44-2.43], P = 0.95) or in-hospital mortality (odds ratio 1.80 [95% confidence interval 0.70-5.05], P = 0.24). With and without adjustment for CRP level, age, and sex, Kaplan-Meier survival curves according to LAC positivity confirmed the absence of an association with VTE or in-hospital mortality (unadjusted P = 0.64 and P = 0.26, respectively; adjusted hazard ratio 1.13 [95% confidence interval 0.48-2.60] and 1.80 [95% confidence interval 0.67-5.01], respectively). CONCLUSION: Patients with COVID-19 have an increased prevalence of LAC positivity associated with biologic markers of inflammation. However, LAC positivity at the time of hospital admission is not associated with VTE risk and/or in-hospital mortality.


Subject(s)
COVID-19/complications , Lupus Coagulation Inhibitor/blood , Venous Thromboembolism/etiology , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/mortality , Female , Hospital Mortality , Humans , Male , Middle Aged , Prognosis , Prospective Studies , Risk Factors , Survival Rate , Venous Thromboembolism/blood
11.
Science ; 369(6504): 718-724, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32661059

ABSTRACT

Coronavirus disease 2019 (COVID-19) is characterized by distinct patterns of disease progression that suggest diverse host immune responses. We performed an integrated immune analysis on a cohort of 50 COVID-19 patients with various disease severity. A distinct phenotype was observed in severe and critical patients, consisting of a highly impaired interferon (IFN) type I response (characterized by no IFN-ß and low IFN-α production and activity), which was associated with a persistent blood viral load and an exacerbated inflammatory response. Inflammation was partially driven by the transcriptional factor nuclear factor-κB and characterized by increased tumor necrosis factor-α and interleukin-6 production and signaling. These data suggest that type I IFN deficiency in the blood could be a hallmark of severe COVID-19 and provide a rationale for combined therapeutic approaches.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Interferon alpha-2/metabolism , Interferon-alpha/metabolism , Interferon-beta/metabolism , Pneumonia, Viral/immunology , Adult , Aged , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/virology , Critical Illness , Cross-Sectional Studies , Female , Gene Expression Profiling , Humans , Immunity, Innate , Inflammation , Interleukin-6/metabolism , Male , Middle Aged , NF-kappa B/metabolism , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Signal Transduction , T-Lymphocyte Subsets/immunology , Tumor Necrosis Factor-alpha/metabolism , Viral Load
12.
Angiogenesis ; 23(4): 611-620, 2020 11.
Article in English | MEDLINE | ID: mdl-32458111

ABSTRACT

BACKGROUND: Coronavirus disease-2019 (COVID-19), a respiratory disease has been associated with ischemic complications, coagulation disorders, and an endotheliitis. OBJECTIVES: To explore endothelial damage and activation-related biomarkers in COVID-19 patients with criteria of hospitalization for referral to intensive care unit (ICU) and/or respiratory worsening. METHODS: Analysis of endothelial and angiogenic soluble markers in plasma from patients at admission. RESULTS: Study enrolled 40 consecutive COVID-19 patients admitted to emergency department that fulfilled criteria for hospitalization. Half of them were admitted in conventional wards without any ICU transfer during hospitalization; whereas the 20 others were directly transferred to ICU. Patients transferred in ICU were more likely to have lymphopenia, decreased SpO2 and increased D-dimer, CRP and creatinine levels. In those patients, soluble E-selectin and angiopoietin-2 were significantly increased (p value at 0.009 and 0.003, respectively). Increase in SELE gene expression (gene coding for E-selectin protein) was confirmed in an independent cohort of 32 patients using a whole blood gene expression profile analysis. In plasma, we found a strong association between angiopoetin-2 and CRP, creatinine and D-dimers (with p value at 0.001, 0.001 and 0.003, respectively). ROC curve analysis identified an Angiopoietin-2 cut-off of 5000 pg/mL as the best predictor for ICU outcome (Se = 80.1%, Sp = 70%, PPV = 72.7%, NPV = 77%), further confirmed in multivariate analysis after adjustment for creatinine, CRP or D-dimers. CONCLUSION: Angiopoietin-2 is a relevant predictive factor for ICU direct admission in COVID-19 patients. This result showing an endothelial activation reinforces the hypothesis of a COVID-19-associated microvascular dysfunction.


Subject(s)
Angiopoietin-2/blood , Coronavirus Infections/blood , Coronavirus Infections/therapy , Endothelium, Vascular/metabolism , Intensive Care Units , Pneumonia, Viral/blood , Pneumonia, Viral/therapy , Aged , Betacoronavirus , Biomarkers/blood , COVID-19 , Critical Care/methods , E-Selectin/blood , Female , Gene Expression Profiling , Hospitalization , Humans , Male , Middle Aged , Pandemics , Patient Admission , Prospective Studies , Respiration, Artificial , SARS-CoV-2
13.
Cell Rep ; 28(9): 2275-2287.e5, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31461645

ABSTRACT

Necroptosis is a form of programmed cell death that is defined by activation of the kinase RIPK3 and subsequent cell membrane permeabilization by the effector MLKL. RIPK3 activation can also promote immune responses via production of cytokines and chemokines. How active cytokine production is coordinated with the terminal process of necroptosis is unclear. Here, we report that cytokine production continues within necroptotic cells even after they have lost cell membrane integrity and irreversibly committed to death. This continued cytokine production is dependent on mRNA translation and requires maintenance of endoplasmic reticulum integrity that remains after plasma membrane integrity is lost. The continued translation of cytokines by cellular corpses contributes to necroptotic cell uptake by innate immune cells and priming of adaptive immune responses to antigens associated with necroptotic corpses. These findings imply that cell death and production of inflammatory mediators are coordinated to optimize the immunogenicity of necroptotic cells.


Subject(s)
Cell Membrane/metabolism , Necroptosis , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Tumor Necrosis Factor-alpha/biosynthesis , 3T3 Cells , Animals , Endoplasmic Reticulum/metabolism , Female , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics
14.
Cell Death Dis ; 9(5): 539, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29748576

ABSTRACT

Influenza A virus (IAV) infection perturbs metabolic pathways such as autophagy, a stress-induced catabolic pathway that crosstalks with cellular inflammatory responses. However, the impact of autophagy perturbation on IAV gene expression or host cell responses remains disputed. Discrepant results may be a reflection of in vivo studies using cell-specific autophagy-related (Atg) gene-deficient mouse strains, which do not delineate modification of developmental programmes from more proximal effects on inflammatory response. In vitro experiments can be confounded by gene expression divergence in wild-type cultivated cell lines, as compared to those experiencing long-term absence of autophagy. With the goal to investigate cellular processes within cells that are competent or incompetent for autophagy, we generated a novel experimental cell line in which autophagy can be restored by ATG5 protein stabilization in an otherwise Atg5-deficient background. We confirmed that IAV induced autophagosome formation and p62 accumulation in infected cells and demonstrated that perturbation of autophagy did not impact viral infection or replication in ATG5-stablized cells. Notably, the induction of interferon-stimulated genes (ISGs) by IAV was diminished when cells were autophagy competent. We further demonstrated that, in the absence of ATG5, IAV-induced interferon-ß (IFN-ß) expression was increased as compared to levels in autophagy-competent lines, a mechanism that was independent of IAV non-structural protein 1. In sum, we report that induction of autophagy by IAV infection reduces ISG expression in infected cells by limiting IFN-ß expression, which may benefit viral replication and spread.


Subject(s)
Autophagosomes/immunology , Autophagy-Related Protein 5/immunology , Gene Expression Regulation/immunology , Influenza A virus/immunology , Interferon-beta/immunology , Orthomyxoviridae Infections/immunology , Animals , Autophagy-Related Protein 5/genetics , Cell Line , Influenza A virus/genetics , Interferon-beta/genetics , Mice , Mice, Knockout , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/pathology
16.
Nat Cell Biol ; 19(9): 1116-1129, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28846096

ABSTRACT

Apoptosis represents a key anti-cancer therapeutic effector mechanism. During apoptosis, mitochondrial outer membrane permeabilization (MOMP) typically kills cells even in the absence of caspase activity. Caspase activity can also have a variety of unwanted consequences that include DNA damage. We therefore investigated whether MOMP-induced caspase-independent cell death (CICD) might be a better way to kill cancer cells. We find that cells undergoing CICD display potent pro-inflammatory effects relative to apoptosis. Underlying this, MOMP was found to stimulate NF-κB activity through the downregulation of inhibitor of apoptosis proteins. Strikingly, engagement of CICD displays potent anti-tumorigenic effects, often promoting complete tumour regression in a manner dependent on intact immunity. Our data demonstrate that by activating NF-κB, MOMP can exert additional signalling functions besides triggering cell death. Moreover, they support a rationale for engaging caspase-independent cell death in cell-killing anti-cancer therapies.


Subject(s)
Caspases/metabolism , Colonic Neoplasms/enzymology , Inflammation Mediators/metabolism , Mitochondria/enzymology , Mitochondrial Membranes/enzymology , NF-kappa B/metabolism , Aniline Compounds/pharmacology , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Colonic Neoplasms/drug therapy , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Genotype , HeLa Cells , Humans , Inhibitor of Apoptosis Proteins/metabolism , Macrophage Activation , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mitochondria/drug effects , Mitochondria/immunology , Mitochondria/pathology , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/immunology , Mitochondrial Membranes/pathology , NF-kappa B/deficiency , Necrosis , Permeability , Phenotype , Protein Serine-Threonine Kinases/metabolism , RNA Interference , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Signal Transduction , Sulfonamides/pharmacology , Time Factors , Transfection , Tumor Necrosis Factor-alpha/metabolism , NF-kappaB-Inducing Kinase
17.
J Exp Med ; 214(8): 2231-2241, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28663435

ABSTRACT

CD8+ T cells mediate antigen-specific immune responses that can induce rejection of solid tumors. In this process, dendritic cells (DCs) are thought to take up tumor antigens, which are processed into peptides and loaded onto MHC-I molecules, a process called "cross-presentation." Neither the actual contribution of cross-presentation to antitumor immune responses nor the intracellular pathways involved in vivo are clearly established because of the lack of experimental tools to manipulate this process. To develop such tools, we generated mice bearing a conditional DC-specific mutation in the sec22b gene, a critical regulator of endoplasmic reticulum-phagosome traffic required for cross-presentation. DCs from these mice show impaired cross-presentation ex vivo and defective cross-priming of CD8+ T cell responses in vivo. These mice are also defective for antitumor immune responses and are resistant to treatment with anti-PD-1. We conclude that Sec22b-dependent cross-presentation in DCs is required to initiate CD8+ T cell responses to dead cells and to induce effective antitumor immune responses during anti-PD-1 treatment in mice.


Subject(s)
Cross-Priming/immunology , Neoplasms/immunology , R-SNARE Proteins/physiology , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/physiology , Cell Death/immunology , Dendritic Cells/immunology , Female , Immunity, Cellular/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , R-SNARE Proteins/genetics , RAW 264.7 Cells
18.
Nat Rev Immunol ; 17(4): 262-275, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28287107

ABSTRACT

Dying cells have an important role in the initiation of CD8+ T cell-mediated immunity. The cross-presentation of antigens derived from dying cells enables dendritic cells to present exogenous tissue-restricted or tumour-restricted proteins on MHC class I molecules. Importantly, this pathway has been implicated in multiple autoimmune diseases and accounts for the priming of tumour antigen-specific T cells. Recent data have revealed that in addition to antigen, dying cells provide inflammatory and immunogenic signals that determine the efficiency of CD8+ T cell cross-priming. The complexity of these signals has been evidenced by the multiple molecular pathways that result in cell death and that have now been shown to differentially influence antigen transfer and immunity. In this Review, we provide a detailed summary of both the passive and active signals that are generated by dying cells during their initiation of CD8+ T cell-mediated immunity. We propose that molecules generated alongside cell death pathways - inducible damage-associated molecular patterns (iDAMPs) - are upstream immunological cues that actively regulate adaptive immunity.


Subject(s)
Antigen Presentation/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Death/immunology , Cross-Priming/immunology , Animals , Humans
19.
Science ; 350(6258): 328-34, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26405229

ABSTRACT

Dying cells initiate adaptive immunity by providing both antigens and inflammatory stimuli for dendritic cells, which in turn activate CD8(+) T cells through a process called antigen cross-priming. To define how different forms of programmed cell death influence immunity, we established models of necroptosis and apoptosis, in which dying cells are generated by receptor-interacting protein kinase-3 and caspase-8 dimerization, respectively. We found that the release of inflammatory mediators, such as damage-associated molecular patterns, by dying cells was not sufficient for CD8(+) T cell cross-priming. Instead, robust cross-priming required receptor-interacting protein kinase-1 (RIPK1) signaling and nuclear factor κB (NF-κB)-induced transcription within dying cells. Decoupling NF-κB signaling from necroptosis or inflammatory apoptosis reduced priming efficiency and tumor immunity. Our results reveal that coordinated inflammatory and cell death signaling pathways within dying cells orchestrate adaptive immunity.


Subject(s)
Apoptosis/immunology , CD8-Positive T-Lymphocytes/immunology , NF-kappa B/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Caspase 8/metabolism , Cell Survival , Cross-Priming , Dendritic Cells/immunology , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Signal Transduction
20.
Nat Immunol ; 16(8): 850-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26075911

ABSTRACT

The success of antitumor immune responses depends on the infiltration of solid tumors by effector T cells, a process guided by chemokines. Here we show that in vivo post-translational processing of chemokines by dipeptidylpeptidase 4 (DPP4, also known as CD26) limits lymphocyte migration to sites of inflammation and tumors. Inhibition of DPP4 enzymatic activity enhanced tumor rejection by preserving biologically active CXCL10 and increasing trafficking into the tumor by lymphocytes expressing the counter-receptor CXCR3. Furthermore, DPP4 inhibition improved adjuvant-based immunotherapy, adoptive T cell transfer and checkpoint blockade. These findings provide direct in vivo evidence for control of lymphocyte trafficking via CXCL10 cleavage and support the use of DPP4 inhibitors for stabilizing biologically active forms of chemokines as a strategy to enhance tumor immunotherapy.


Subject(s)
Dipeptidyl Peptidase 4/immunology , Immunotherapy/methods , Lymphocytes/immunology , Neoplasms, Experimental/immunology , Neoplasms, Experimental/therapy , Adoptive Transfer , Animals , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/immunology , Chemokine CXCL10/immunology , Chemokine CXCL10/metabolism , Chemokines/immunology , Chemokines/metabolism , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Female , Flow Cytometry , Lymphocytes/metabolism , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neoplasms, Experimental/genetics , Pyrazines/pharmacology , Receptors, CXCR3/immunology , Receptors, CXCR3/metabolism , Sitagliptin Phosphate , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...