Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674074

ABSTRACT

Plexiform lesions are a hallmark of pulmonary arterial hypertension (PAH) in humans and are proposed to stem from dysfunctional angioblasts. Broiler chickens (Gallus gallus) are highly susceptible to PAH, with plexiform-like lesions observed in newly hatched individuals. Here, we reported the emergence of plexiform-like lesions in the embryonic lungs of broiler chickens. Lung samples were collected from broiler chickens at embryonic day 20 (E20), hatch, and one-day-old, with PAH-resistant layer chickens as controls. Plexiform lesions consisting of CD133+/vascular endothelial growth factor receptor type-2 (VEGFR-2)+ angioblasts were exclusively observed in broiler embryos and sporadically in layer embryos. Distinct gene profiles of angiogenic factors were observed between the two strains, with impaired VEGF-A/VEGFR-2 signaling correlating with lesion development and reduced arteriogenesis. Pharmaceutical inhibition of VEGFR-2 resulted in enhanced lesion development in layer embryos. Moreover, broiler embryonic lungs displayed increased activation of HIF-1α and nuclear factor erythroid 2-related factor 2 (Nrf2), indicating a hypoxic state. Remarkably, we found a negative correlation between lung Nrf2 activation and VEGF-A and VEGFR-2 expression. In vitro studies indicated that Nrf2 overactivation restricted VEGF signaling in endothelial progenitor cells. The findings from broiler embryos suggest an association between plexiform lesion development and impaired VEGF system due to aberrant activation of Nrf2.


Subject(s)
Chickens , Lung , Signal Transduction , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-2 , Animals , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Chick Embryo , Lung/metabolism , Lung/embryology , Lung/pathology , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics
2.
J Inflamm Res ; 15: 2087-2101, 2022.
Article in English | MEDLINE | ID: mdl-35386223

ABSTRACT

Purpose: Pulmonary arterial hypertension (PAH) is a progressive and fatal pulmonary vascular disease initiated by endothelial dysfunction. Mesenchymal stromal cells (MSCs) have been shown to ameliorate PAH in various rodent models; however, these models do not recapitulate all the histopathological alterations observed in human PAH. Broiler chickens (Gallus gallus) can develop PAH spontaneously with neointimal and plexogenic arteriopathy strikingly similar to that in human patients. Herein, we examined the protective effects of MSC transplantation on the development of PAH in this avian model. Methods: Mixed-sex broilers at 15 d of age were received 2×106 MSCs or PBS intravenously. One day later, birds were exposed to cool temperature with excessive salt in their drinking water to induce PAH. Cumulative morbidity from PAH and right-to-left ventricle ratio were recorded. Lung histologic features were evaluated for the presence of endothelial damage, endothelial proliferation and plexiform lesions. Expression of proinflammatory mediators and angiogenic factors in the lung was detected. Matrigel tube formation assay was performed to determine the angiogenic potential of endogenous MSCs. Results: MSC administration reduced cumulative PAH morbidity and attenuated endothelial damage, plexiform lesions and production of inflammatory mediators in the lungs. No significant difference in the expression of paracrine angiogenic factors including VEGF-A and TGF-ß was determined between groups, suggesting that they are not essential for the beneficial effect of MSC transplantation. Interestingly, the endogenous MSCs from birds receiving MSC transplantation demonstrated endothelial differentiatial capacity in vitro whereas those from the mock birds did not. Conclusion: Our results support the therapeutic use of MSC transplantation for PAH treatment and suggest that exogenous MSCs produce beneficial effects through modulating inflammation and endogenous MSC-mediated vascular repair.

SELECTION OF CITATIONS
SEARCH DETAIL