Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Publication year range
1.
BMC Infect Dis ; 24(1): 920, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39232674

ABSTRACT

BACKGROUND: Sepsis remains a leading cause of mortality in intensive care units, and rapid and accurate pathogen detection is crucial for effective treatment. This study evaluated the clinical application of multi-site metagenomic next-generation sequencing (mNGS) for the diagnosis of sepsis, comparing its performance against conventional methods. METHODS: A retrospective analysis was conducted on 69 patients with sepsis consecutively admitted to the Department of Intensive Care Medicine, Meizhou People's Hospital. Samples of peripheral blood and infection sites were collected for mNGS and conventional method tests to compare the positive rate of mNGS and traditional pathogen detection methods and the distribution of pathogens. The methods used in this study included a comprehensive analysis of pathogen consistency between peripheral blood and infection site samples. Additionally, the correlation between the pathogens detected and clinical outcomes was investigated. RESULTS: Of the patients with sepsis, 57.97% experienced dyspnea, and 65.2% had underlying diseases, with hypertension being the most common. mNGS demonstrated a significantly higher pathogen detection rate (88%) compared to the conventional method tests (26%). The pathogen consistency rate was 60% between plasma and bronchoalveolar lavage fluid samples, and that of plasma and local body fluid samples was 63%. The most frequently detected pathogens were gram-negative bacteria, and Klebsiella pneumonia. There were no significant differences in the clinical features between the pathogens. CONCLUSION: mNGS is significantly superior to conventional methods in pathogen detection. There was a notable high pathogen consistency detection between blood and local body fluid samples, supporting the clinical relevance of mNGS. This study highlights the superiority of mNGS in detecting a broad spectrum of pathogens quickly and accurately. TRIAL REGISTRATION: Not applicable.


Subject(s)
High-Throughput Nucleotide Sequencing , Intensive Care Units , Metagenomics , Sepsis , Humans , Sepsis/diagnosis , Sepsis/microbiology , Male , Female , Middle Aged , Retrospective Studies , Aged , Metagenomics/methods , Adult , Bacteria/isolation & purification , Bacteria/genetics , Bacteria/classification , Aged, 80 and over
2.
Sheng Li Xue Bao ; 69(1): 17-32, 2017 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-28217804

ABSTRACT

This study aimed to investigate the effects of acupuncture intervention on excessive eccentric training-induced changes of perimysial junctional plates (PJPs) domain. Thirty healthy male Wistar rats were randomly assigned to 5 groups: control group, four-week training group, four-week training + 1-week recovery group and four-week training + 1-week acupuncture group. Rats were subjected to continuous excessive eccentric training for 4 weeks (incline -16°, speed 16-20 m/min, 60-90 min/d, 5 day per week), and then were subjected to one-week spontaneous recovery or one-week recovery with acupuncture intervention (a piece of filiform needle for 4 min every day). The PJPs domain changes were observed under transmission electron microscopy, and the perimysial collagen network structural changes were examined by scanning electron microscopy with or without a digestion technique (NaOH). The following results were obtained: (1) Compared with control group, PJPs domain of four-week training group showed excessive shortening of sarcomere (P < 0.001), serious damage of sarcomere structure, and altered mitochondria morphology in intermyofibria and subsarcolemma; 54% degradation of sarcolemma, and increased number of caveolae (P < 0.01); reduced number of PJPs (P < 0.001). (2) In comparison with four-week training group, PJPs domain was slightly changed in four-week training + 1-week recovery group, i.e., partial recovery of sarcomere length and structure (accounting for 85.23% of control group), and recovery of intermyofibrial and subsarcolemmal mitochondria morphology; decreased sarcolemmal degradation (P < 0.001), and increased number of caveolae (P < 0.05); increased PJPs number (P < 0.001). (3) PJPs domain changed in four-week training + 1-week acupuncture group compared with four-week training + 1-week recovery group, which were substantial recovery of sarcomere length (accounting for 94.51% of control group), increased subsarcolemmal mitochondrial fusion (P < 0.001), decreased caveolae number (P < 0.001), and decreased PJPs number (P < 0.001). The results indicated that excessive eccentric training resulted in excessively reduced number of PJPs with altered PJPs domain homeostasis, thus impeding the adaptability to eccentric training. After 1 week of natural recovery, the number of PJPs was excessively increased, hindering muscle damage repair. Acupuncture intervention helped to recover PJPs number and PJPs domain homeostasis, thus significantly relieving overuse injuries.


Subject(s)
Acupuncture Therapy , Muscle, Skeletal/ultrastructure , Physical Conditioning, Animal , Animals , Male , Microscopy, Electron, Transmission , Mitochondria/ultrastructure , Random Allocation , Rats , Rats, Wistar , Sarcomeres/ultrastructure
3.
ACS Appl Mater Interfaces ; 5(21): 10682-9, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24144837

ABSTRACT

Cell encapsulation by locking the interfacial microgels in a water-in-oil Pickering emulsion has currently been attracting intensive attention because of the biofriendly reaction condition. Various kinds of functional microgels can only stabilize an oil-in-water Pickering emulsion, and it is thus difficult to encapsulate cells in the emulsion where the cells are usually dispersed in the continuous phase. Herein, we introduce a facile method for preparing cell-embedded colloidosomes in an oil-in-water emulsion via polyelectrolyte complexation. Escherichia coli (E. coli) was chosen as a model cell and embedded in the thin shell of chitosan/poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAM-co-AAc)) microcapsules. This is beneficial for expressing cell function because of the little resistance of mass exchange between the embedded cells and the external environment. Cells can be used in biocatalysis or biomedicine and our product will hold great promises to improve the performance in those fields. The synthesis route presents a platform to prepare cell-embedded microcapsules in an oil-in-water Pickering emulsion in a facile and biocompatible way. First, an emulsion stabilized by P(NIPAM-co-AAc) microgels was prepared. Then, the interfacial microgels in the emulsion were locked by chitosan to form colloidosomes. The mechanism of cell encapsulation in this system was studied via fluorescent labeling. The viability of E. coli after encapsulation is ca. 90%. Encapsulated E. coli is able to metabolize glucose from solution, and exhibits a slower rate than free E. coli. This demonstrates a diffusion constraint through the colloidosome shell.


Subject(s)
Chitosan/chemistry , Emulsions/chemistry , Escherichia coli/growth & development , Cell Survival/drug effects , Escherichia coli/chemistry , Oils/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL