Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 407
Filter
1.
Rep Prog Phys ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39360390

ABSTRACT

Quantum tangent kernel methods provide an efficient approach to analyzing the performance of quantum machine learning models in the infinite-width limit, which is of crucial importance in designing appropriate circuit architectures for certain learning tasks. Recently, they have been adapted to describe the convergence rate of training errors in quantum neural networks in an analytical manner. Here, we study the connections between the expressibility and value concentration of quantum tangent kernel models. In particular, for global loss functions, we rigorously prove that high expressibility of both the global and local quantum encodings can lead to exponential concentration of quantum tangent kernel values to zero. Whereas for local loss functions, such issue of exponential concentration persists owing to the high expressibility, but can be partially mitigated. We further carry out extensive numerical simulations to support our analytical theories. Our discoveries unveil a fundamental feature of quantum neural tangent kernels, indicating that the issue of their concentration cannot be bypassed merely by transitioning to a local encoding scheme while maintaining high expressibility. This offers valuable insights for the design of wide quantum variational circuit models in practical applications.

2.
Biol Trace Elem Res ; 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39340597

ABSTRACT

Selenium, iron, and zinc (Se, Fe, Zn) are essential trace elements crucial for animal growth, development, and immune protection, but they can be detrimental in excess. This study evaluates the impacts of Se, Fe and Zn on Apostichopus japonicus over a period of nine days, utilizing concentrations ranging from low to high: Se (0.20 µmol/L and 0.82 µmol/L), Fe (4.74 µmol/L and 18.96 µmol/L), Zn (1.88 µmol/L and 7.51 µmol/L). Concentrations of these trace elements in sea cucumbers increased with exposure time. Activities of CAT, SOD, and GSH-PX enzymes were enhanced. Transcriptomic analyses of sea cucumber body wall revealed significant gene expression changes, with differentially expressed genes (DEGs) numbering 294 at high and 945 at low Se concentrations, 906 at high and 210 at low Fe concentrations, and 423 at high and 123 at low Zn concentrations. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses highlighted DEGs enrichment in critical metabolic and immune-related pathways, including DNA replication, arachidonic acid metabolism, and oxidative phosphorylation. These results suggest that energy metabolism and immune regulation are pivotal in managing these elements, potentially enhancing sea cucumber immunity. This study enhances our comprehension of the physiological responses of sea cucumbers to trace elements and provides a theoretical basis for their use in aquaculture.

3.
Biology (Basel) ; 13(9)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39336132

ABSTRACT

Growth differentiation among farmed sea urchins (Strongylocentrotus intermedius) poses a significant challenge to aquaculture, with there being a limited understanding of the underlying molecular mechanisms. In this study, sea urchins with varying growth rates, reared under identical conditions, were analyzed for feeding behavior, gut microbiota, and transcriptomes. Large-sized sea urchins demonstrated significantly higher feeding ability and longer duration than smaller ones. The dominant phyla across all size groups were Campylobacterota, Proteobacteria, and Firmicutes, with Campylobacterota showing the highest abundance in small-sized sea urchins (82.6%). However, the families Lachnospiraceae and Pseudomonadaceae were significantly less prevalent in small-sized sea urchins. Transcriptome analysis identified 214, 544, and 732 differentially expressed genes (DEGs) in the large vs. medium, large vs. small, and medium vs. small comparisons, respectively. Gene Ontology and KEGG pathway analyses associated DEGs with key processes such as steroid biosynthesis, protein processing within the endoplasmic reticulum, and nucleotide sugar metabolism. Variations in phagosomes and signaling pathways indicated that size differences are linked to disparities in energy expenditure and stress responses. These findings provide a foundation for future investigations into the regulatory mechanisms underlying growth differences in S. intermedius and provide clues for the screening of molecular markers useful to improve sea urchin production.

4.
Front Plant Sci ; 15: 1437769, 2024.
Article in English | MEDLINE | ID: mdl-39220005

ABSTRACT

Introduction: Negative oxygen ions are produced by plants through photosynthesis, utilizing "tip discharge" or the photoelectric effect, which has various functions such as sterilization, dust removal, and delaying aging. With global warming, high temperatures may affect the ability of Phalaenopsis aphrodite Rchb. f. to produce negative oxygen ions. P. aphrodite is commonly used in modern landscape planning and forest greening. Methods: In this study, P. aphrodite was selected as the research object. By artificially simulating the climate, the control group (CK) and the high temperature stress group (HS) were set up in the experiment. Results: The study found that compared with the control group, the ability of P. aphrodite to produce negative oxygen ions significantly decreased when exposed to high temperature stress. Meanwhile, under high temperature stress treatment, peroxidase content increased by 102%, and proline content significantly increased by 35%. Discussion: Redundancy analysis results indicated a significant correlation between the root endophytic microbial community of P. aphrodite and negative oxygen ions, as well as physiological indicators. Under high temperature stress, P. aphrodite may affect the regulation of physiological indicators by modifying the composition of root endophytic microbial communities, thereby influencing the ability to release negative oxygen ions.

5.
PLoS One ; 19(9): e0309656, 2024.
Article in English | MEDLINE | ID: mdl-39259740

ABSTRACT

Inspired by the positive impact of service outsourcing in Chery and other enterprises on human resources, this paper explores the impact of service outsourcing on labor income share. This paper introduces a framework to analyze how value added is distributed between capital and labor along the mix of inputs from different countries and sectors participating in global value chains and examines the effect of service outsourcing on the labor share income. Using the World Input-Output Database (WIOD) and OECD Inter-Country Input-Output (OECD- ICIO) table, this paper utilizes the WWZ decomposition method of global value chains (GVCs) to quantify labor share income. The results show that: (1) service outsourcing significantly contributes to the increase in labor share income; (2) Offshore outsourcing had a statistically stronger effect on labor share income after the financial crisis, both compared to the past and to onshore outsourcing; (3) Offshore outsourcing has a higher coefficient in countries with low technology. For ease of comparison, only onshore outsourcing shows a statistically significant difference among various service types; (4) The analysis using Chinese data reveals that the coefficient of offshore outsourcing is negative and statistically significant, indicating that industries with higher levels of service outsourcing have a lower labor share income.


Subject(s)
Income , Outsourced Services , Outsourced Services/economics , Humans
6.
Am J Transl Res ; 16(8): 4190-4199, 2024.
Article in English | MEDLINE | ID: mdl-39262760

ABSTRACT

OBJECTIVE: To investigate the efficacy and inflammatory responses of treating periodontal-endodontic combined lesions (PECLs) with root canal therapy (RCT) alone versus RCT combined with periodontal non-surgical treatment (PNST). METHODS: A total of 103 patients with PECLs admitted between January 2019 and January 2020 to Shenzhen Baoan Women's and Children's Hospital were divided into control (RCT alone, 50 cases) and combined (RCT + PNST, 53 cases) groups. Comparative analyses included efficacy assessment, probing depth (PD), bleeding index (BI), plaque index (PLI), gingival index (GI), serum levels of interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and high-sensitivity C-reactive protein (hs-CRP), pain severity during RCT, incidence of adverse reactions, post-treatment tooth conditions, and recurrence rates at 6 and 12 months. Univariate analysis identified factors associated with poor treatment outcome in PECL patients. RESULTS: The combined group demonstrated a higher total effective rate (90.57%) compared to the control group (74.00%) (P < 0.05). Patients receiving combined therapy showed significantly lower PD, BI, PLI, GI, IL-1ß, TNF-α, and hs-CRP levels, as well as reduced pain severity and lower recurrence rates at 6 and 12 months (all P < 0.05). The combined group also had a lower incidence of adverse (periodontal distending pain and local foreign body sensation) reactions (7.54%) compared to the control group (26.00%) (P < 0.05). After treatment, the incidence of periodontitis, percussion tenderness, and loosening of teeth in the combined group was lower than that of the control group, and the retention rate of affected teeth was significantly higher (all P < 0.05). Factors such as history of alcoholism, betel nut chewing, and treatment method (RCT) were significantly associated with poorer prognosis in PECL patients (P < 0.05). CONCLUSION: Combined RCT and PNST improves clinical efficacy, reduces pain severity and inflammation levels, decreases adverse reactions, and enhances tooth retention in PECL patients. This treatment approach should be considered the preferred option for managing PECLs.

7.
Heliyon ; 10(12): e32324, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975127

ABSTRACT

Fulminant giant cell myocarditis is a fatal form of acute myocarditis leading to a rapid-onset clinical presentation with lethal arrhythmias, acute heart failure, or cardiogenic shock requiring mechanical circulatory support. We report the case of a 52-year-old female diagnosed with fulminant myocarditis requiring veno-arterial extracorporeal membrane oxygenation (V-A ECMO) and intra-aortic balloon pump(IABP) support. Due to hemodynamic instability, she was transferred to our hospital by helicopter on day 4. On arrival at our hospital, she underwent percutaneous balloon atrial septostomy to decompress the left ventricle. Although the left ventricular distension and pulmonary edema improved after atrial septostomy, no signs of biventricular function recovery were identified on day 14. On day 23, V-A ECMO and IABP were switched to a durable left ventricular assist device(LVAD) system and a right ventricular assist device(RVAD) with ECMO (RVAD-ECMO) under median sternotomy. On day 37, RVAD-ECMO was eventually removed and rehabilitation was started with the remaining LVAD support as destination therapy. On day 78, the patient was finally discharged with LVAD support to follow-up as an outpatient. This case underscores the importance of a multidisciplinary approach and rigorous monitoring to optimize outcomes in the treatment of fulminant giant cell myocarditis.

8.
Cell Rep ; 43(5): 114193, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38709635

ABSTRACT

Astrocytes play vital roles in blood-brain barrier (BBB) maintenance, yet how they support BBB integrity under normal or pathological conditions remains poorly defined. Recent evidence suggests that ion homeostasis is a cellular mechanism important for BBB integrity. In the current study, we investigated the function of an astrocyte-specific pH regulator, Slc4a4, in BBB maintenance and repair. We show that astrocytic Slc4a4 is required for normal astrocyte morphological complexity and BBB function. Multi-omics analyses identified increased astrocytic secretion of CCL2 coupled with dysregulated arginine-NO metabolism after Slc4a4 deletion. Using a model of ischemic stroke, we found that loss of Slc4a4 exacerbates BBB disruption, which was rescued by pharmacological or genetic inhibition of the CCL2-CCR2 pathway in vivo. Together, our study identifies the astrocytic Slc4a4-CCL2 and endothelial CCR2 axis as a mechanism controlling BBB integrity and repair, while providing insights for a therapeutic approach against BBB-related CNS disorders.


Subject(s)
Astrocytes , Blood-Brain Barrier , Chemokine CCL2 , Receptors, CCR2 , Sodium-Bicarbonate Symporters , Stroke , Animals , Humans , Male , Mice , Astrocytes/metabolism , Astrocytes/pathology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain/metabolism , Brain/pathology , Chemokine CCL2/metabolism , Mice, Inbred C57BL , Receptors, CCR2/metabolism , Signal Transduction , Stroke/metabolism , Stroke/pathology , Sodium-Bicarbonate Symporters/genetics , Sodium-Bicarbonate Symporters/metabolism
9.
Front Pharmacol ; 15: 1374183, 2024.
Article in English | MEDLINE | ID: mdl-38756380

ABSTRACT

The human voltage-gated sodium channel Nav1.7 is a widely proven target for analgesic drug studies. ProTx2, a 30-residue polypeptide from Peruvian green tarantula venom, shows high specificity to activity against human Nav1.7, suggesting its potential to become a non-addictive analgesic. However, its high sensitivity to human Nav1.4 raises concerns about muscle side effects. Here, we engineered three mutants (R13A, R13D, and K27Y) of ProTx2 to evaluate their pharmacological activities toward Nav1.7 and Nav1.4. It is demonstrated that the mutant R13D maintained the analgesic effect in mice while dramatically reducing its muscle toxicity compared with ProTx2. The main reason is the formation of a strong electrostatic interaction between R13D and the negatively charged amino acid residues in DII/S3-S4 of Nav1.7, which is absent in Nav1.4. This study advances our understanding and insights on peptide toxins, paving the way for safer, effective non-addictive analgesic development.

10.
Sci Adv ; 10(21): eadk8908, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781342

ABSTRACT

DNA replication is a vulnerable cellular process, and its deregulation leads to genomic instability. Here, we demonstrate that chromobox protein homolog 3 (CBX3) binds replication protein A 32-kDa subunit (RPA2) and regulates RPA2 retention at stalled replication forks. CBX3 is recruited to stalled replication forks by RPA2 and inhibits ring finger and WD repeat domain 3 (RFWD3)-facilitated replication restart. Phosphorylation of CBX3 at serine-95 by casein kinase 2 (CK2) kinase augments cadherin 1 (CDH1)-mediated CBX3 degradation and RPA2 dynamics at stalled replication forks, which permits replication fork restart. Increased expression of CBX3 due to gene amplification or CK2 inhibitor treatment sensitizes prostate cancer cells to poly(ADP-ribose) polymerase (PARP) inhibitors while inducing replication stress and DNA damage. Our work reveals CBX3 as a key regulator of RPA2 function and DNA replication, suggesting that CBX3 could serve as an indicator for targeted therapy of cancer using PARP inhibitors.


Subject(s)
Casein Kinase II , DNA Replication , Poly(ADP-ribose) Polymerase Inhibitors , Replication Protein A , Humans , Casein Kinase II/metabolism , Casein Kinase II/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Replication Protein A/metabolism , Replication Protein A/genetics , Cell Line, Tumor , Proteolysis , DNA Damage , Phosphorylation , Chromosomal Proteins, Non-Histone
11.
Funct Plant Biol ; 512024 May.
Article in English | MEDLINE | ID: mdl-38801747

ABSTRACT

Rapid wound healing is crucial in protecting sweet potatoes (Ipomoea batatas ) against infection, water loss and quality deterioration during storage. The current study investigated how acibenzolar-S-methyl (ASM) treatment influenced wound healing in harvested sweet potatoes by investigating the underlying mechanism. It was found that ASM treatment of wounded sweet potatoes induced a significant accumulation of lignin at the wound sites, which effectively suppressed weight loss. After 4days of healing, the lignin content of ASM-treated sweet potatoes was 41.8% higher than that of untreated ones, and the weight loss rate was 20.4% lower. Moreover, ASM treatment increased the ability of sweet potatoes to defend against wounding stress through enhancing processes such as increased production of reactive oxygen species (ROS), activation of enzymes involved in the ROS metabolism (peroxidase, superoxide dismutase and catalase) and phenylpropanoid pathway (phenylalanine ammonia lyase, cinnamate-4-hydroxylase, 4-coumarate-CoA ligase and cinnamyl alcohol dehydrogenase), and intensive synthesis of phenolics and flavonoids. These results suggest that treating harvested sweet potatoes with ASM promotes wound healing through the activation of the ROS metabolism and phenylpropanoid pathway.


Subject(s)
Ipomoea batatas , Lignin , Reactive Oxygen Species , Ipomoea batatas/metabolism , Reactive Oxygen Species/metabolism , Lignin/metabolism , Wound Healing/drug effects , Plant Proteins/metabolism , Phenols/metabolism , Phenylalanine Ammonia-Lyase/metabolism
12.
Bioengineering (Basel) ; 11(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38534499

ABSTRACT

The construction of medical knowledge graphs (MKGs) is steadily progressing from manual to automatic methods, which inevitably introduce noise, which could impair the performance of downstream healthcare applications. Existing error detection approaches depend on the topological structure and external labels of entities in MKGs to improve their quality. Nevertheless, due to the cost of manual annotation and imperfect automatic algorithms, precise entity labels in MKGs cannot be readily obtained. To address these issues, we propose an approach named Enhancing error detection on Medical knowledge graphs via intrinsic labEL (EMKGEL). Considering the absence of hyper-view KG, we establish a hyper-view KG and a triplet-level KG for implicit label information and neighborhood information, respectively. Inspired by the success of graph attention networks (GATs), we introduce the hyper-view GAT to incorporate label messages and neighborhood information into representation learning. We leverage a confidence score that combines local and global trustworthiness to estimate the triplets. To validate the effectiveness of our approach, we conducted experiments on three publicly available MKGs, namely PharmKG-8k, DiseaseKG, and DiaKG. Compared with the baseline models, the Precision@K value improved by 0.7%, 6.1%, and 3.6%, respectively, on these datasets. Furthermore, our method empirically showed that it significantly outperformed the baseline on a general knowledge graph, Nell-995.

13.
Phys Rev E ; 109(2-1): 024118, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38491632

ABSTRACT

The supercritical region is often described as uniform with no definite transitions. The distinct behaviors of the matter therein, e.g., as liquidlike and gaslike, however, suggest "supercritical boundaries." Here we provide a mathematical description of these phenomena by revisiting the Yang-Lee theory and introducing a complex phase diagram, specifically a four-dimensional (4D) one with complex T and p. While the traditional 2D phase diagram with real temperature T and pressure p values (the physical plane) lacks Lee-Yang (LY) zeros beyond the critical point, preventing the occurrence of criticality, the off-plane zeros in this 4D scenario still induce critical anomalies in various physical properties. This relationship is evidenced by the correlation between the Widom line and LY edges in van der Waals, 2D Ising model, and water. The diverged supercritical boundaries manifest the high-dimensional feature of the phase diagram: e.g., when LY zeros of complex T or p are projected onto the physical plane, boundaries defined by isobaric heat capacity C_{p} or isothermal compression coefficient K_{T} emanates. These results demonstrate the incipient phase transition nature of the supercritical matter.

14.
Mater Horiz ; 11(11): 2685-2693, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38497840

ABSTRACT

Poly(amidoxime) (PAO) has been recognized as the most potential candidate for extracting uranium from seawater, owing to its merits of outstanding uranium affinity, low cost, and large-scale production. Despite remarkable achievements, existing PAO sorbents suffer from unsatisfactory uranium extraction efficiency and selectivity, as imposed by the inherently sluggish uranium adsorption kinetics and inevitable spatial configuration transition of amidoxime, which diminishes uranium affinity. Herein, we discover a facile and integrated design to elaborate a PAO/MXene nanocomposite that delivers ultrahigh and durable uranium/vanadium (U/V) selectivity. The key to our design lies in harnessing MXene-enabled strong intermolecular interactions to PAO to minimize the spatial configuration transition of amidoxime and stabilizing its superior uranium affinity, as well as creating a separated photothermal interface to maximize temperature-strengthened affinity for uranium over vanadium. Such a synergetic effect allows the nanocomposite to acquire over a 4-fold improvement in U/V selectivity compared to that of pure PAO as well as an unprecedented distribution coefficient of uranium compared to most state-of-the-art sorbents. We further demonstrate that our nanocomposite exhibits durable U/V selectivity with negligible attenuation and good antibacterial ability even in long-term operation. The design concept and extraordinary performance in this study bring PAO-based sorbents a step closer to practical uranium extraction from seawater.

15.
Phys Rev Lett ; 132(8): 086101, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38457702

ABSTRACT

The exploration of solid-solid phase transition suffers from the uncertainty of how atoms in two crystal structures match. We devised a theoretical framework to describe and classify crystal-structure matches (CSM). Such description fully exploits the translational and rotational symmetries and is independent of the choice of supercells. This is enabled by the use of the Hermite normal form, an analog of reduced echelon form for integer matrices. With its help, exhausting all CSMs is made possible, which goes beyond the conventional optimization schemes. In an example study of the martensitic transformation of steel, our enumeration algorithm finds many candidate CSMs with lower strains than known mechanisms. Two long-sought CSMs accounting for the most commonly observed Kurdjumov-Sachs orientation relationship and the Nishiyama-Wassermann orientation relationship are unveiled. Given the comprehensiveness and efficiency, our enumeration scheme provide a promising strategy for solid-solid phase transition mechanism research.

16.
Nat Commun ; 15(1): 1871, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424044

ABSTRACT

CDK4/6 inhibitors (CDK4/6i) show anticancer activity in certain human malignancies, such as breast cancer. However, their application to other tumor types and intrinsic resistance mechanisms are still unclear. Here, we demonstrate that MYC amplification confers resistance to CDK4/6i in bladder, prostate and breast cancer cells. Mechanistically, MYC binds to the promoter of the E3 ubiquitin ligase KLHL42 and enhances its transcription, leading to RB1 deficiency by inducing both phosphorylated and total pRB1 ubiquitination and degradation. We identify a compound that degrades MYC, A80.2HCl, which induces MYC degradation at nanomolar concentrations, restores pRB1 protein levels and re-establish sensitivity of MYC high-expressing cancer cells to CDK4/6i. The combination of CDK4/6i and A80.2HCl result in marked regression in tumor growth in vivo. Altogether, these results reveal the molecular mechanisms underlying MYC-induced resistance to CDK4/6i and suggest the utilization of the MYC degrading molecule A80.2HCl to potentiate the therapeutic efficacy of CDK4/6i.


Subject(s)
Breast Neoplasms , Cyclin-Dependent Kinase Inhibitor Proteins , Humans , Male , Pelvis , Promoter Regions, Genetic , Prostate , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/genetics , Protein Kinase Inhibitors
17.
Heliyon ; 10(4): e26034, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38370265

ABSTRACT

From the perspective of ecosystem attributes, this research was conducted to explore the impact of people's adaptation and response to their perception of environmental risks on their preference for sustainable development strategies and the realization of a circular economy based on Social Judgment Theory and the Value-Belief-Norm (VBN) theory. To achieve the goal, three substudies were conducted using questionnaire surveys-the first substudy aimed to examine the influence of ecological attributes on environmental risk perception (ERP). The second substudy attempted to understand the intricate connection between ERP and justice, while the third study explored the relationship between justice and SDS (sustainable development strategies) and CEG (realization of a circular economy). The results indicate the following: (1) The first substudy reveals that ecological attributes impact environmental risk perception (ERP), with different environmental values exerting distinct influences. (2) The second substudy suggests that ERP facilitates the realization of social, environmental, and ecological justice, but people's preference for a specific economic growth strategy will affect their tendency to realize justice. (3) The third substudy shows that sustainability strategies (i.e., sustainable production, consumption, and use) mediate the relationship between justice and circular economy goals (CEG). Among the three strategies, sustainable use plays the most significant mediating role. The research outcomes underscore the importance of prioritizing sustainable use in future research in theory and practice.

18.
Ecotoxicol Environ Saf ; 271: 115963, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38232526

ABSTRACT

As a fungicide with the characteristics of high effectiveness, internal absorption and broad spectrum, imazalil is widely used to prevent and treat in fruits and vegetables. Here, pregnant C57BL/6 mice were exposed to imazalil at dietary levels of 0, 0.025‰, and 0.25‰ through drinking water during pregnancy and lactation. We then analyzed the phenotype, metabolome, and expression of related genes and proteins in the livers of mice. There was a marked decrease in the body and liver weights of male offspring mice after maternal imazalil exposure, while this effect on the dam and female offspring was slight. Metabolomics analyses revealed that imazalil significantly altered the metabolite composition of liver samples from both dams and offspring. The preliminary results of the analysis indicated that glucolipid metabolism was the pathway most significantly affected by imazalil. We performed a coabundance association analysis of metabolites with significant changes in the pathway of glycolipid metabolism, and IMZ altered the networks of both dams and offspring compared with the network in control mice, especially in male offspring. The hepatic triglyceride, non-esterified fatty acid and glucose levels were increased significantly in the dams but decreased significantly in male offspring after maternal imazalil exposure. Furthermore, the expression levels of genes associated with glycolipid metabolism and m6A RNA methylation were significantly affected by maternal intake of imazalil. Imazalil-induced glucolipid metabolism disturbance was highly correlated with m6A RNA methylation. In conclusion, maternal imazalil exposure resulted in glucolipid metabolism disturbance and abnormal m6A RNA methylation in the livers of dams and offspring mice. We expected that the information acquired in this study will provide novel evidence for understanding the effect of maternal imazalil exposure on potential health risks.


Subject(s)
Imidazoles , Liver , RNA Methylation , Pregnancy , Mice , Male , Female , Animals , Mice, Inbred C57BL , Liver/metabolism , Glycolipids/metabolism
19.
Drug Alcohol Depend ; 256: 111094, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38262198

ABSTRACT

BACKGROUND: Methamphetamine (MA) use increases the risk of age-related diseases. However, it remains uncertain whether MA use exhibits accelerated biological aging, as indicated by telomere length (TL), a proposed marker of aging. Here we conducted studies in both humans and rats to investigate the association between MA use and TL. METHODS: We recruited 125 male MA users and 66 healthy controls, aged 30-40 years. MA users were diagnosed using DSM-5 criteria and categorized into two groups: non-severe (n = 78) and severe (n = 47) MA use disorder (MUD). MA-treated conditioned place preference (CPP) rats were utilized to validate our clinical investigations. TL was assessed using real-time polymerase chain reaction. RESULTS: At clinical levels, MA users exhibited significantly shorter leukocyte TL compared to healthy controls. Among MA users, individuals with severe MUD had significantly shorter leukocyte TL than those with non-severe MUD. Importantly, both univariate and multivariate linear regression analyses demonstrated a negative association between the severity of MA use and leukocyte TL. In a rat model of MA-induced CPP, leukocyte TL was also significantly shortened after MA administration, especially in rats with higher CPP expression or reinstatement scores. CONCLUSION: MA use shortened TL, and the severity of MA use was negatively correlated with TL. These findings provide new insights into the pathophysiology of accelerated aging caused by MA use and may have implications for identifying biomarkers and developing novel treatment strategies for MUD.


Subject(s)
Aging , Methamphetamine , Humans , Adult , Animals , Rats , Male , Diagnostic and Statistical Manual of Mental Disorders , Leukocytes , Methamphetamine/pharmacology , Telomere
20.
Sci Total Environ ; 912: 169154, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38065501

ABSTRACT

Submerged plants constitute a vital component of shallow lake ecosystems, where water depth and sediment nitrogen­phosphorus content are two key factors influencing their growth. This study focuses on Vallisneria natans and investigates the morphological and physiological changes of V. natans under the interaction of three water depth gradients and two different sediment nutrient levels. It explores the mechanisms through which varying sediment nutrient conditions under different water depths affect the growth of V. natans. The results indicate that both independent and interactive effects of water depth and sediment nutrient status significantly impact the morphology, antioxidant enzyme activity, and photosynthetic pigment content of V. natans, with water depth having a greater influence. To adapt to increased water depth-induced light stress, V. natans responds morphologically by increasing leaf length, leaf width, and decreasing maximum root length. Physiologically, it enhances its antioxidant regulation capacity and photosynthetic efficiency by increasing antioxidant enzyme activity, root vitality, and photosynthetic pigment content to counter weak light stress. However, these adaptations are insufficient to cope with excessively deep waters (200 cm). Sediment nutrient levels primarily control the growth of V. natans by affecting its root system. When sediment nitrogen and phosphorus content is lower, V. natans exhibits greater total root volume and surface area to enhance nutrient absorption efficiency. Water depth not only directly influences the growth of submerged plants but may also impact the migration and transformation of phosphorus in sediments, further exacerbating its effects on the growth of these plants, thus accelerating the regime shift of shallow lakes. Therefore, this study reveals V. natans' response strategies to varying water depths and sediment nutrient levels, determining suitable water levels and sediment nutrient conditions for its growth. These research findings provide a scientific basis for water level management and ecological restoration of submerged aquatic plants in shallow lakes.


Subject(s)
Ecosystem , Hydrocharitaceae , Water , Antioxidants , Hydrocharitaceae/physiology , Lakes , Nitrogen , Phosphorus , Nutrients
SELECTION OF CITATIONS
SEARCH DETAIL