Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 70
1.
NMR Biomed ; 37(3): e5073, 2024 Mar.
Article En | MEDLINE | ID: mdl-37990800

The goal of this study was to investigate the origin of brain lactate (Lac) signal in the healthy anesthetized rat after injection of hyperpolarized (HP) [1-13 C]pyruvate (Pyr). Dynamic two-dimensional spiral chemical shift imaging with flow-sensitizing gradients revealed reduction in both vascular and brain Pyr, while no significant dependence on the level of flow suppression was detected for Lac. These results support the hypothesis that the HP metabolites predominantly reside in different compartments in the brain (i.e., Pyr in the blood and Lac in the parenchyma). Data from high-resolution metabolic imaging of [1-13 C]Pyr further demonstrated that Lac detected in the brain was not from contributions of vascular signal attributable to partial volume effects. Additionally, metabolite distributions and kinetics measured with dynamic imaging after injection of HP [1-13 C]Lac were similar to Pyr data when Pyr was used as the substrate. These data do not support the hypothesis that Lac observed in the brain after Pyr injection was generated in other organs and then transported across the blood-brain barrier (BBB). Together, the presented results provide further evidence that even in healthy anesthetized rats, the transport of HP Pyr across the BBB is sufficiently fast to permit detection of its metabolic conversion to Lac within the brain.


Lactic Acid , Pyruvic Acid , Rats , Animals , Pyruvic Acid/metabolism , Lactic Acid/metabolism , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/metabolism , Blood-Brain Barrier/diagnostic imaging , Carbon Isotopes/metabolism
2.
Mol Imaging Biol ; 26(2): 222-232, 2024 Apr.
Article En | MEDLINE | ID: mdl-38147265

Hyperpolarization techniques significantly enhance the sensitivity of magnetic resonance (MR) and thus present fascinating new directions for research and applications with in vivo MR imaging and spectroscopy (MRI/S). Hyperpolarized 13C MRI/S, in particular, enables real-time non-invasive assessment of metabolic processes and holds great promise for a diverse range of clinical applications spanning fields like oncology, neurology, and cardiology, with a potential for improving early diagnosis of disease, patient stratification, and therapy response assessment. Despite its potential, technical challenges remain for achieving clinical translation. This paper provides an overview of the discussions that took place at the international workshop "New Horizons in Hyperpolarized 13C MRI," in March 2023 at the Bavarian Academy of Sciences and Humanities, Munich, Germany. The workshop covered new developments, as well as future directions, in topics including polarization techniques (particularly focusing on parahydrogen-based methods), novel probes, considerations related to data acquisition and analysis, and emerging clinical applications in oncology and other fields.


Magnetic Resonance Imaging , Medical Oncology , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods
3.
J Magn Reson Open ; 16-172023 Dec.
Article En | MEDLINE | ID: mdl-38046796

In light of the growing interest in-vivo deuterium metabolic imaging, hyperpolarized 13C, 15N, 3He, and 129Xe imaging, as well as 31P spectroscopy and imaging in large animals on clinical MR scanners, we demonstrate the use of a (radio)frequency converter system to allow X-nuclear MR spectroscopy (MRS) and MR imaging (MRI) on standard clinical MRI scanners without multinuclear capability. This is not only an economical alternative to the multinuclear system (MNS) provided by the scanner vendors, but also overcomes the frequency bandwidth problem of some vendor-provided MNSs that prohibit users from applications with X-nuclei of low magnetogyric ratio, such as deuterium (6.536 MHz/Tesla) and 15N (-4.316 MHz/Tesla). Here we illustrate the design of the frequency converter system and demonstrate its feasibility for 31P (17.235 MHz/Tesla), 13C (10.708 MHz/Tesla), and 15N MRS and MRI on a clinical MRI scanner without vendor-provided multinuclear hardware.

4.
J Magn Reson Open ; 16-172023 Dec.
Article En | MEDLINE | ID: mdl-38046795

We report several inductively coupled RF coil designs that are very easy to construct, produce high signal-to-noise ratio (SNR) and high spatial resolution while accommodating life support, anesthesia and monitoring in small animals. Inductively coupled surface coils were designed for hyperpolarized 13 C MR spectroscopic imaging (MRSI) of mouse brain, with emphases on the simplicity of the circuit design, ease of use, whole-brain coverage, and high SNR. The simplest form was a resonant loop designed to crown the mouse head for a snug fit to achieve full coverage of the brain with high sensitivity when inductively coupled to a broadband pick-up coil. Here, we demonstrated the coil's performance in hyperpolarized 13 C MRSI of a normal mouse and a glioblastoma mouse model at 4.7 T. High SNR exceeding 70:1 was obtained in the brain with good spatial resolution (1.53 mm × 1.53 mm). Similar inductively coupled loop for other X-nuclei can be made very easily in a few minutes and achieve high performance, as demonstrated in 31 P spectroscopy. Similar design concept was expanded to splitable, inductively coupled volume coils for high-resolution proton MRI of marmoset at 3T and 9.4T, to easily accommodate head restraint, vital-sign monitoring, and anesthesia delivery.

5.
J Magn Reson Open ; 16-172023 Dec.
Article En | MEDLINE | ID: mdl-38090022

Hyperpolarization chemistry based on reversible exchange of parahydrogen, also known as Signal Amplification By Reversible Exchange (SABRE), is a particularly simple approach to attain high levels of nuclear spin hyperpolarization, which can enhance NMR and MRI signals by many orders of magnitude. SABRE has received significant attention in the scientific community since its inception because of its relative experimental simplicity and its broad applicability to a wide range of molecules, however in vivo detection of molecular probes hyperpolarized by SABRE has remained elusive. Here we describe a first demonstration of SABRE-hyperpolarized contrast detected in vivo, specifically using hyperpolarized [1-13C]pyruvate. Biocompatible formulations of hyperpolarized [1-13C]pyruvate in, both, methanol-water mixtures, and ethanol-water mixtures followed by dilution with saline and catalyst filtration were prepared and injected into healthy Sprague Dawley and Wistar rats. Effective hyperpolarization-catalyst removal was performed with silica filters without major losses in hyperpolarization. Metabolic conversion of pyruvate to lactate, alanine, and bicarbonate was detected in vivo. Pyruvate-hydrate was also observed as minor byproduct. Measurements were performed on the liver and kidney at 4.7 T via time-resolved spectroscopy and chemical-shift-resolved MRI. In addition, whole-body metabolic measurements were obtained using a cryogen-free 1.5 T MRI system, illustrating the utility of combining lower-cost MRI systems with simple, low-cost hyperpolarization chemistry to develop safe, and scalable molecular imaging.

6.
Neuro Oncol ; 2023 Dec 09.
Article En | MEDLINE | ID: mdl-38070147

BACKGROUND: We recently conducted a phase 2 trial (NCT028865685) evaluating intracranial efficacy of pembrolizumab for brain metastases (BM) of diverse histologies. Our study met its primary efficacy endpoint and illustrates that pembrolizumab exerts promising activity in a select group of patients with BM. Given the importance of aberrant vasculature in mediating immunosuppression, we explored the relationship between checkpoint inhibitor (ICI) efficacy and vascular architecture in the hopes of identifying potential mechanisms of intracranial ICI response or resistance for BM. METHODS: Using Vessel Architectural Imaging (VAI), a histologically validated quantitative metric for in vivo tumor vascular physiology, we analyzed dual echo DSC/DCE MRI for 44 patients on trial. Tumor and peri-tumor cerebral blood volume/flow, vessel size, arterial- and venous-dominance, and vascular permeability were measured before and after treatment with pembrolizumab. RESULTS: BM that progressed on ICI were characterized by a highly aberrant vasculature dominated by large-caliber vessels. In contrast, ICI-responsive BM possessed a more structurally balanced vasculature consisting of both small and large vessels, and there was a trend towards a decrease in under-perfused tissue, suggesting a reversal of the negative effects of hypoxia. In the peri-tumor region, development of smaller blood vessels, consistent with neo-angiogenesis, was associated with tumor growth before radiographic evidence of contrast enhancement on anatomical MRI. CONCLUSIONS: This study, one of the largest functional imaging studies for BM, suggests that vascular architecture is linked with ICI efficacy. Studies identifying modulators of vascular architecture, and effects on immune activity, are warranted and may inform future combination treatments.

7.
J Cereb Blood Flow Metab ; : 271678X231216144, 2023 Nov 24.
Article En | MEDLINE | ID: mdl-38000018

Cerebrovascular dysfunction is a significant contributor to Alzheimer's disease (AD) progression. AD mouse models show altered capillary morphology, density, and diminished blood flow in areas of tau and beta-amyloid accumulation. The purpose of this study was to examine alterations in vascular structure and their contributions to perfusion deficits in the hippocampus in AD and mild cognitive impairment (MCI). Seven individuals with AD and MCI (1 AD/6 MCI), nine cognitively intact older healthy adults, and seven younger healthy adults underwent pseudo-continuous arterial spin labeling (PCASL) and gradient-echo/spin-echo (GESE) dynamic susceptibility contrast (DSC) MRI. Cerebral blood flow (CBF), cerebral blood volume, relative vessel size index (rVSI), and mean vessel density were calculated from model fitting. Lower CBF from PCASL and SE DSC MRI was observed in the hippocampus of AD/MCI group. rVSI in the hippocampus of the AD/MCI group was larger than that of the two healthy groups (FDR-P = 0.02). No difference in vessel density was detected between the groups. We also explored relationship of tau burden from 18F-flortaucipir positron emission tomography and vascular measures from MRI. Tau burden was associated with larger vessel size and lower CBF in the hippocampus. We postulate that larger vessel size may be associated with vascular alterations in AD/MCI.

8.
bioRxiv ; 2023 Aug 28.
Article En | MEDLINE | ID: mdl-37693537

Structurally and functionally aberrant vasculature is a hallmark of tumor angiogenesis and treatment resistance. Given the synergistic link between aberrant tumor vasculature and immunosuppression, we analyzed perfusion MRI for 44 patients with brain metastases (BM) undergoing treatment with pembrolizumab. To date, vascular-immune communication, or the relationship between immune checkpoint inhibitor (ICI) efficacy and vascular architecture, has not been well-characterized in human imaging studies. We found that ICI-responsive BM possessed a structurally balanced vascular makeup, which was linked to improved vascular efficiency and an immune-stimulatory microenvironment. In contrast, ICI-resistant BM were characterized by a lack of immune cell infiltration and a highly aberrant vasculature dominated by large-caliber vessels. Peri-tumor region analysis revealed early functional changes predictive of ICI resistance before radiographic evidence on conventional MRI. This study was one of the largest functional imaging studies for BM and establishes a foundation for functional studies that illuminate the mechanisms linking patterns of vascular architecture with immunosuppression, as targeting these aspects of cancer biology may serve as the basis for future combination treatments.

9.
Angew Chem Int Ed Engl ; 62(31): e202219181, 2023 08 01.
Article En | MEDLINE | ID: mdl-37247411

We report dissolution Dynamic Nuclear Polarization (d-DNP) of [15 N3 ]metronidazole ([15 N3 ]MNZ) for the first time. Metronidazole is a clinically approved antibiotic, which can be potentially employed as a hypoxia-sensing molecular probe using 15 N hyperpolarized (HP) nucleus. The DNP process is very efficient for [15 N3 ]MNZ with an exponential build-up constant of 13.8 min using trityl radical. After dissolution and sample transfer to a nearby 4.7 T Magnetic Resonance Imaging scanner, HP [15 N3 ]MNZ lasted remarkably long with T1 values up to 343 s and 15 N polarizations up to 6.4 %. A time series of HP [15 N3 ]MNZ images was acquired in vitro using a steady state free precession sequence on the 15 NO2 peak. The signal lasted over 13 min with notably long T2 of 20.5 s. HP [15 N3 ]MNZ was injected in the tail vein of a healthy rat, and dynamic spectroscopy was performed over the rat brain. The in vivo HP 15 N signals persisted over 70 s, demonstrating an unprecedented opportunity for in vivo studies.


Anti-Bacterial Agents , Metronidazole , Rats , Animals , Metronidazole/pharmacology , Anti-Bacterial Agents/pharmacology , Solubility , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging
10.
NMR Biomed ; 36(5): e4873, 2023 05.
Article En | MEDLINE | ID: mdl-36347826

T1 relaxation times of the 14 T1 phantom spheres that make up the standard International Society for Magnetic Resonance in Medicine (ISMRM)/National Institute of Standards and Technology (NIST) system phantom are reported at 7 T. T1 values of six of the 14 T1 spheres at 7 T (with T1 > 270 ms) have been reported previously, but, to the best of our knowledge, not all of the T1s of the 14 T1 spheres at 7 T have been reported before. Given the increasing number of 7-T MRI systems in clinical settings and the increasing need for T1 phantoms that cover a wide range of T1 relaxation times to evaluate rapid T1 mapping techniques at 7 T, it is of high interest to obtain accurate T1 values for all the ISMRM/NIST T1 spheres at 7 T. In this work, T1 relaxation time was measured on a 7-T MRI scanner using an inversion-recovery spin-echo pulse sequence and derived by curve fitting to a signal equation that exhibits insensitivity to B 1 + inhomogeneity. Day-to-day reproducibility was within 0.4% and differences between two different RF coils within 1.5%. T1s of a subset of the 14 spheres were also measured by NMR at 7 T for comparison, and the T1 results were consistent between the MRI and NMR measurements. T1 measurements performed at 3 T on the same 14 spheres using the same sequence and fitting method yielded good agreement (mean percentage difference of -0.4%) with the reference T1 values available from the NIST, reflecting the accuracy of the reported technique despite being without the standard phantom housing. We found that the T1 values of all 14 NiCl2 spheres are consistently lower at 7 T than at 3 T. Although our results were well reproduced, this study represents initial work to quantify the 7-T T1 values of all 14 NIST T1 spheres outside of the standard housing and does not warrant reproducibility of the ISMRM/NIST system phantom as a whole. A future study to assess the T1 values of a version of the ISMRM/NIST system phantom that fits inside typical commercial coils at 7 T will be very helpful. Nonetheless, the details on our acquisition and curve-fitting methods reported here allow the T1 measurements to be reproduced elsewhere. The T1 values of all 14 spheres reported here will be valuable for the development of quantitative MR fingerprinting and rapid T1 mapping for a large variety of research projects, not only in neuroimaging but also in body MRI, musculoskeletal MRI, and gadolinium contrast-enhanced MRI, each of which is concerned with much shortened T1.


Magnetic Resonance Imaging , Neuroimaging , Reproducibility of Results , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Reference Values
11.
Mol Imaging Biol ; 25(2): 353-362, 2023 04.
Article En | MEDLINE | ID: mdl-35962301

PURPOSE: New generation of receptor tyrosine kinase inhibitors (RTKIs) have shown to improve survival in many solid tumors. However, an imaging biomarker is needed for patient selection and prediction of treatment response. This study evaluates the use of quantitative changes of HER3 on 68 Ga-NOTA-HER3P1 PET/MRI for prediction of early response to pan-RTKIs in gastric cancer (GCa). PROCEDURES: GCa cell lines were evaluated for expression of RTKs, and downstream signaling pathways (AKT and MAPK). Cell viability was assessed following 24-72 h of treatment with 0.01-1 µmol/L of afatinib, a pan-RTKI. HER3-expressing afatinib-sensitive (NCI-N87) and resistant cells (SNU16) were selected for evaluation of changes in RTKs expression and downstream pathways, with 24-72 h of 0.1 µmol/L afatinib treatment. 68 Ga-NOTA-HER3P1 PET/MRI was performed in subcutaneous NCI-N87 and SNU16 xenografts (nu:nu, n = 12/group) at baseline and 4 days after afatinib treatment (10 mg/kg, PO, daily). Temporal changes in PET measures were correlated to HER3 expression in tumors, tumor growth rate, and treatment response. RESULTS: With afatinib therapy, NCI-N87 cells showed increased total HER3 expression, and reduction of other RTKs and downstream nodes within 72 h, while SNU16 cells showed no significant change in total HER3 and downstream nodes. 68 Ga-HER3P1 PET/MRI showed increased uptake in NCI-N87 and no significant change in SNU16 tumors (day 4 vs. baseline SUVmean: 3.8 ± 0.7 vs. 1.6 ± 0.6, p < 0.05 in NCI-N87, and 1.5 ± 0.7 vs. 1.7 ± 0.7, p > 0.05 in SNU16). These findings were in concordance with HER3 expression in histopathological analyses and tumor growth over 3 weeks of treatment (mean tumor volume in treated vs. control: 11 ± 17 mm3 vs. 293 ± 79 mm3, p < 0.001 in NCI-N87, and 238 ± 91 mm3 vs. 282 ± 35 mm3, p > 0.05 in SNU16). CONCLUSIONS: Quantitative changes in HER3 PET could be used to predict response to pan-RTKI within few days after initiation of treatment and can help with personalizing GCa management.


Stomach Neoplasms , Humans , Afatinib/pharmacology , Stomach Neoplasms/pathology , Cell Line, Tumor , Positron-Emission Tomography/methods , Receptor, ErbB-3
12.
Neuropsychopharmacology ; 48(5): 797-805, 2023 04.
Article En | MEDLINE | ID: mdl-35995971

Glucose metabolism is impaired in brain aging and several neurological conditions. Beneficial effects of ketones have been reported in the context of protecting the aging brain, however, their neurophysiological effect is still largely uncharacterized, hurdling their development as a valid therapeutic option. In this report, we investigate the neurochemical effect of the acute administration of a ketone d-beta-hydroxybutyrate (D-ßHB) monoester in fasting healthy participants with ultrahigh-field proton magnetic resonance spectroscopy (MRS). In two within-subject metabolic intervention experiments, 7 T MRS data were obtained in fasting healthy participants (1) in the anterior cingulate cortex pre- and post-administration of D-ßHB (N = 16), and (2) in the posterior cingulate cortex pre- and post-administration of D-ßHB compared to active control glucose (N = 26). Effect of age and blood levels of D-ßHB and glucose were used to further explore the effect of D-ßHB and glucose on MRS metabolites. Results show that levels of GABA and Glu were significantly reduced in the anterior and posterior cortices after administration of D-ßHB. Importantly, the effect was specific to D-ßHB and not observed after administration of glucose. The magnitude of the effect on GABA and Glu was significantly predicted by older age and by elevation of blood levels of D-ßHB. Together, our results show that administration of ketones acutely impacts main inhibitory and excitatory transmitters in the whole fasting cortex, compared to normal energy substrate glucose. Critically, such effects have an increased magnitude in older age, suggesting an increased sensitivity to ketones with brain aging.


Glutamic Acid , Gyrus Cinguli , Humans , Adult , 3-Hydroxybutyric Acid/pharmacology , Glutamic Acid/metabolism , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/metabolism , Ketones , Proton Magnetic Resonance Spectroscopy , Glucose , gamma-Aminobutyric Acid
13.
Eur Heart J Cardiovasc Imaging ; 23(10): 1277-1289, 2022 09 10.
Article En | MEDLINE | ID: mdl-35788836

As one of the highest energy consumer organs in the body, the heart requires tremendous amount of adenosine triphosphate (ATP) to maintain its continuous mechanical work. Fatty acids, glucose, and ketone bodies are the primary fuel source of the heart to generate ATP with perturbations in ATP generation possibly leading to contractile dysfunction. Cardiac metabolic imaging with magnetic resonance imaging (MRI) plays a crucial role in understanding the dynamic metabolic changes occurring in the failing heart, where the cardiac metabolism is deranged. Also, targeting and quantifying metabolic changes in vivo noninvasively is a promising approach to facilitate diagnosis, determine prognosis, and evaluate therapeutic response. Here, we summarize novel MRI techniques used for detailed investigation of cardiac metabolism in heart failure including magnetic resonance spectroscopy (MRS), hyperpolarized MRS, and chemical exchange saturation transfer based on evidence from preclinical and clinical studies and to discuss the potential clinical application in heart failure.


Heart Failure , Adenosine Triphosphate/metabolism , Energy Metabolism , Fatty Acids/metabolism , Heart Failure/diagnosis , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods , Myocardium/metabolism
14.
J Cereb Blood Flow Metab ; 42(10): 1933-1943, 2022 10.
Article En | MEDLINE | ID: mdl-35673981

White matter lesions (WML) have been linked to cognitive decline in aging as well as in Alzheimer's disease. While hypoperfusion is frequently considered a cause of WMLs due to the resulting reduction in oxygen availability to brain tissue, such reductions could also be caused by impaired oxygen exchange. Here, we tested the hypothesis that venous hyperintense signal (VHS) in arterial spin labeling (ASL) magnetic resonance imaging (MRI) may represent a marker of impaired oxygen extraction in aging older adults. In participants aged 60-80 years (n = 30), we measured cerebral blood flow and VHS with arterial spin labeling, maximum oxygen extraction fraction (OEFmax) with dynamic susceptibility contrast, and WML volume with T1-weighted MRI. We found a significant interaction between OEFmax and VHS presence on WML volume (p = 0.02), where lower OEFmax was associated with higher WML volume in participants with VHS, and higher OEFmax was associated with higher WML volume in participants without VHS. These results indicate that VHS in perfusion-weighted ASL data may represent a distinct cerebrovascular aging pattern involving oxygen extraction inefficiency as well as hypoperfusion.


White Matter , Aged , Brain/metabolism , Cerebrovascular Circulation/physiology , Humans , Magnetic Resonance Imaging , Oxygen/metabolism , Spin Labels , White Matter/blood supply
15.
Mol Imaging Biol ; 24(5): 769-779, 2022 10.
Article En | MEDLINE | ID: mdl-35467249

PURPOSE: To evaluate the use of hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopic imaging (HP-13C MRSI) for quantitative measurement of early changes in glycolytic metabolism and its ability to predict response to pan-tyrosine kinase inhibitor (Pan-TKI) therapy in gastric cancer (GCa). PROCEDURES: Pan-TKI afatinib-sensitive NCI-N87 and resistant SNU16 human GCa cells were assessed for GLUT1, hexokinase-II (HKII), lactate dehydrogenase (LDHA), phosphorylated AKT (pAKT), and phosphorylated MAPK (pMAPK) at 0-72 h of treatment with 0.1 µM afatinib. Subcutaneous NCI-N87 tumor-bearing nude mice underwent [18F]FDG PET/MRI and HP-13C MRSI at baseline and 4 days after treatment with afatinib 10 mg/kg/day or vehicle (n = 10/group). Changes in PET and HP-13C MRSI metabolic parameters were compared between the two groups. Imaging findings were correlated with tumor growth and histopathology over 3 weeks of treatment. RESULTS: In vitro analysis showed a continuous decrease in LDHA, pAKT, and pMAPK in NCI-N87 compared to SNU16 cells within 72 h of treatment with afatinib, without a significant change in GLUT1 and HKII in either cell type. [18F]FDG PET of NCI-N87 tumors showed no significant change in PET measures at baseline and day 4 of treatment in either treatment group (SUVmean day 4/day 0: 2.7 ± 0.42/2.34 ± 0.38, p = 0.57 in the treated group vs. 1.73 ± 0.66/2.24 ± 0.43, p = 0.4 in the control group). HP-13C MRSI demonstrated significantly decreased lactate-to-pyruvate ratio (L/P) in treated tumors (L/P day 4/day 0: 0.83 ± 0.30/1.10 ± 0.20, p = 0.012 vs. 0.94 ± 0.20/0.98 ± 0.30, p = 0.75, in the treated vs. control group, respectively). Response to afatinib was confirmed with decreased tumor size over 3 weeks (11.10 ± 16.50 vs. 293.00 ± 79.30 mm3, p < 0.001, treated group vs. control group, respectively) and histopathologic evaluation. CONCLUSIONS: HP-13C MRSI is a more representative biomarker of early metabolic changes in response to pan-TKI in GCa than [18F]FDG PET and could be used for early prediction of response to targeted therapies.


Fluorodeoxyglucose F18 , Stomach Neoplasms , Animals , Mice , Humans , Pyruvic Acid/metabolism , Hexokinase/metabolism , Glucose Transporter Type 1 , Stomach Neoplasms/diagnostic imaging , Stomach Neoplasms/drug therapy , Protein-Tyrosine Kinases/metabolism , Afatinib , Mice, Nude , Proto-Oncogene Proteins c-akt/metabolism , Magnetic Resonance Imaging/methods , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Magnetic Resonance Spectroscopy/methods , Lactate Dehydrogenases/metabolism , Lactates
16.
Radiology ; 302(2): 410-418, 2022 02.
Article En | MEDLINE | ID: mdl-34751617

Background Patients with recurrent glioblastoma (GBM) are often treated with antiangiogenic agents, such as bevacizumab (BEV). Despite therapeutic promise, conventional MRI methods fail to help determine which patients may not benefit from this treatment. Purpose To use MR spectroscopic imaging (MRSI) with intermediate and short echo time to measure corrected myo-inositol (mI)normalized by contralateral creatine (hereafter, mI/c-Cr) in participants with recurrent GBM treated with BEV and to investigate whether such measurements can help predict survivorship before BEV initiation (baseline) and at 1 day, 4 weeks, and 8 weeks thereafter. Materials and Methods In this prospective longitudinal study (2016-2020), spectroscopic data on mI-a glial marker and osmoregulator within the brain-normalized by contralateral creatine in the intratumoral, contralateral, and peritumoral volumes of patients with recurrent GBM were evaluated. Area under the receiver operating characteristic curve (AUC) was calculated for all volumes at baseline and 1 day, 4 weeks, and 8 weeks after treatment to determine the ability of mI/c-Cr to help predict survivorship. Results Twenty-one participants (median age ± standard deviation, 62 years ± 12; 15 men) were evaluated. Lower mI/c-Cr in the tumor before and during BEV treatment was predictive of poor survivorship, with receiver operating characteristic analyses showing an AUC of 0.75 at baseline, 0.87 at 1 day after treatment, and 1 at 8 weeks after. A similar result was observed in contralateral normal-appearing tissue and the peritumoral volume, with shorter-term survivors having lower levels of mI/c-Cr. In the contralateral volume, a lower ratio of mI to creatine (hereafter, mI/Cr) predicted shorter-term survival at baseline and all other time points. Within the peritumoral volume, lower mI/c-Cr levels were predictive of shorter-term survival at baseline (AUC, 0.80), at 1 day after treatment (AUC, 0.93), and at 4 weeks after treatment (AUC, 0.68). Conclusion Lower levels of myo-inositol normalized by contralateral creatine within intratumoral, contralateral, and peritumoral volumes were predictive of poor survivorship and antiangiogenic treatment failure as early as before bevacizumab treatment. Adapting MR spectroscopic imaging alongside conventional MRI modalities conveys critical information regarding the biologic characteristics of tumors to help better treat individuals with recurrent glioblastoma. Clinical trial registration no. NCT02843230 © RSNA, 2021 Online supplemental material is available for this article.


Angiogenesis Inhibitors/therapeutic use , Bevacizumab/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Inositol/metabolism , Magnetic Resonance Spectroscopy/methods , Biomarkers, Tumor/metabolism , Female , Humans , Longitudinal Studies , Male , Middle Aged , Neoplasm Recurrence, Local , Predictive Value of Tests , Prospective Studies , Treatment Failure
17.
Curr Alzheimer Res ; 18(9): 711-720, 2021.
Article En | MEDLINE | ID: mdl-34825871

BACKGROUND: Reduced cerebrovascular function and accumulation of tau pathology are key components of cognitive decline in Alzheimer's disease (AD). Recent multimodal neuroimaging studies show a correlation between cortical tau accumulation and reduced cerebral perfusion. However, animal models predict that tau exerts capillary-level changes that may not be fully captured by standard imaging protocols. OBJECTIVE: Using newly-developed magnetic resonance imaging (MRI) technology to measure capillary- specific perfusion parameters, we examined a series of mild cognitive impairment (MCI) and AD patients with tau positron emission tomography (PET) to observe whole-brain capillary perfusion alterations and their association with tau deposition. METHODS: Seven subjects with MCI or AD received Flortaucipir PET to measure tau deposition and spin-echo dynamic susceptibility contrast (SE-DSC) MRI to measure microvascular perfusion (<10µm radius vessels). Gradient-echo (GE) DSC and pseudocontinuous arterial spin labeling (PCASL) MRI were also acquired to assess macrovascular perfusion. Tau PET, microvascular perfusion, and cortical thickness maps were visually inspected in volumetric slices and on cortical surface projections. RESULTS: High tau PET signal was generally observed in the lateral temporal and parietal cortices, with uptake in the occipital cortex in one subject. Global blood flow measured by PCASL was reduced with increasing tau burden, which was consistent with previous studies. Tau accumulation was spatially associated with variable patterns of microvascular cerebral blood flow (CBF) and oxygen extraction fraction (OEF) in the cortex and with increased capillary transit heterogeneity (CTH) in adjacent periventricular white matter, independent of amyloid-ß status. CONCLUSION: Although macrovascular perfusion generally correlated with tau deposition at the whole-cortex level, regional changes in microvascular perfusion were not uniformly associated with either tau pathology or cortical atrophy. This work highlights the heterogeneity of AD-related brain changes and the challenges of implementing therapeutic interventions to improve cerebrovascular function.


Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/pathology , Amyloid beta-Peptides , Humans , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , tau Proteins
18.
Neurooncol Adv ; 3(1): vdab060, 2021.
Article En | MEDLINE | ID: mdl-34131648

BACKGROUND: Determining failure to anti-angiogenic therapy in recurrent glioblastoma (GBM) (rGBM) remains a challenge. The purpose of the study was to assess treatment response to bevacizumab-based therapy in patients with rGBM using MR spectroscopy (MRS). METHODS: We performed longitudinal MRI/MRS in 33 patients with rGBM to investigate whether changes in N-acetylaspartate (NAA)/Choline (Cho) and Lactate (Lac)/NAA from baseline to subsequent time points after treatment can predict early failures to bevacizumab-based therapies. RESULTS: After stratifying based on 9-month survival, longer-term survivors had increased NAA/Cho and decreased Lac/NAA levels compared to shorter-term survivors. ROC analyses for intratumoral NAA/Cho correlated with survival at 1 day, 2 weeks, 8 weeks, and 16 weeks. Intratumoral Lac/NAA ROC analyses were predictive of survival at all time points tested. At the 8-week time point, 88% of patients with decreased NAA/Cho did not survive 9 months; furthermore, 90% of individuals with an increased Lac/NAA from baseline did not survive at 9 months. No other metabolic ratios tested significantly predicted survival. CONCLUSIONS: Changes in metabolic levels of tumoral NAA/Cho and Lac/NAA can serve as early biomarkers for predicting treatment failure to anti-angiogenic therapy as soon as 1 day after bevacizumab-based therapy. The addition of MRS to conventional MR methods can provide better insight into how anti-angiogenic therapy affects tumor microenvironment and predict patient outcomes.

19.
Tomography ; 6(2): 203-208, 2020 06.
Article En | MEDLINE | ID: mdl-32548297

We have previously characterized the reproducibility of brain tumor relative cerebral blood volume (rCBV) using a dynamic susceptibility contrast magnetic resonance imaging digital reference object across 12 sites using a range of imaging protocols and software platforms. As expected, reproducibility was highest when imaging protocols and software were consistent, but decreased when they were variable. Our goal in this study was to determine the impact of rCBV reproducibility for tumor grade and treatment response classification. We found that varying imaging protocols and software platforms produced a range of optimal thresholds for both tumor grading and treatment response, but the performance of these thresholds was similar. These findings further underscore the importance of standardizing acquisition and analysis protocols across sites and software benchmarking.


Brain Neoplasms , Cerebral Blood Volume , Brain Neoplasms/blood supply , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Contrast Media , Humans , Magnetic Resonance Imaging , Neoplasm Grading , Reference Values , Reproducibility of Results , Retrospective Studies
20.
J Chem Phys ; 152(18): 184202, 2020 May 14.
Article En | MEDLINE | ID: mdl-32414242

High-field nuclear magnetic resonance (NMR) spectroscopy is an indispensable technique for identification and characterization of chemicals and biomolecular structures. In the vast majority of NMR experiments, nuclear spin polarization arises from thermalization in multi-Tesla magnetic fields produced by superconducting magnets. In contrast, NMR instruments operating at low magnetic fields are emerging as a compact, inexpensive, and highly accessible alternative but suffer from low thermal polarization at a low field strength and consequently a low signal. However, certain hyperpolarization techniques create high polarization levels on target molecules independent of magnetic fields, giving low-field NMR a significant sensitivity boost. In this study, SABRE (Signal Amplification By Reversible Exchange) was combined with high homogeneity electromagnets operating at mT fields, enabling high resolution 1H, 13C, 15N, and 19F spectra to be detected with a single scan at magnetic fields between 1 mT and 10 mT. Chemical specificity is attained at mT magnetic fields with complex, highly resolved spectra. Most spectra are in the strong coupling regime where J-couplings are on the order of chemical shift differences. The spectra and the hyperpolarization spin dynamics are simulated with SPINACH. The simulations start from the parahydrogen singlet in the bound complex and include both chemical exchange and spin evolution at these mT fields. The simulations qualitatively match the experimental spectra and are used to identify the spin order terms formed during mT SABRE. The combination of low field NMR instruments with SABRE polarization results in sensitive measurements, even for rare spins with low gyromagnetic ratios at low magnetic fields.

...