Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 912: 168644, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38000755

ABSTRACT

Harmful algal blooms resulting from eutrophication pose a severe threat to human health. Acetylacetone (AA) has emerged as a potential chemical for combatting cyanobacterial blooms, but its real-world application remains limited. In this study, we conducted a 42-day evaluation of AA's effectiveness in controlling blooms in river water, with a focus on the interplay between ecological community structure, organism functional traits, and water quality. At a concentration of 0.2 mM, AA effectively suppressed the growth of Cyanobacteria (88 %), Bacteroidia (49 %), and Alphaproteobacteria (52 %), while promoting the abundance of Gammaproteobacteria (5.0 times) and Actinobacteria (7.2 times) that are associated with the degradation of organic matter. Notably, after dosing of AA, the OD680 (0.07 ± 0.02) and turbidity (8.6 ± 2.1) remained at a satisfactory level. AA induced significant disruptions in two photosynthesis and two biosynthesis pathways (P < 0.05), while simultaneously enriching eight pathways of xenobiotics biodegradation and metabolism. This enrichment facilitated the reduction of organic pollutants and supported improved water quality. Importantly, AA treatment decreased the abundance of two macrolide-related antibiotic resistance genes (ARGs), ereA and vatE, while slightly increased the abundance of two aminoglycoside-related ARGs, aacA and strB. Overall, our findings establish AA as an efficient and durable algicide with favorable ecological safety. Moreover, this work contributes to the development of effective strategies for maintaining and restoring the health and resilience of aquatic ecosystems impacted by harmful algal blooms.


Subject(s)
Cyanobacteria , Ecosystem , Humans , Pentanones , Eutrophication , Harmful Algal Bloom , Lakes/chemistry
2.
Environ Sci Technol ; 56(13): 9683-9692, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35696645

ABSTRACT

The regulation of photosynthetic machinery with a nonoxidative approach is a powerful but challenging strategy for the selective inhibition of bloom-forming cyanobacteria. Acetylacetone (AA) was recently found to be a target-selective cyanocide for Microcystis aeruginosa, but the cause and effect in the studied system are still unclear. By recording of the chemical fingerprints of the cells at two treatment intervals (12 and 72 h with 0.1 mM AA) with omics assays, the molecular mechanism of AA in inactivating Microcystis aeruginosa was elucidated. The results clearly reveal the effect of AA on ferredoxin and the consequent effects on the physiological and biochemical processes of Microcystis aeruginosa. In addition to its role as an electron acceptor of photosystem I, ferredoxin plays pivotal roles in the assimilation of nitrogen in cyanobacterial cells. The effect of AA on ferredoxin and on nonheme iron of photosystem II first cut off the photosynthetic electron transfer flow and then interrupted the synthesis of adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide phosphate (NADPH), which ultimately might affect carbon fixation and nitrogen assimilation metabolisms. The results here provide missing pieces in the current knowledge on the selective inhibition of cyanobacteria, which should shed light on the better control of harmful blooms.


Subject(s)
Cyanobacteria , Microcystis , Carbon , Electrons , Ferredoxins , Nitrogen , Pentanones
4.
Environ Sci Pollut Res Int ; 29(5): 7652-7660, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34480310

ABSTRACT

Ionic liquids are widely used in many fields due to their extremely tunable nature and exceptional properties. The extensive application of ionic liquids raises great concerns regarding their bioaccumulation potential and adverse effects on organisms. Green plants have a great potential for uptake of persistent xenobiotics from aquatic and terrestrial environment. However, the assimilation and bioaccumulation of 1-tetradecyl-3-methylimidazolium bromide ([C14mim]Br) have not been studied in plants yet. In order to explore the phytoaccumulation of [C14mim]+, ryegrass were exposed to [C14mim]Br with hydroponic experiment. The effects of [C14mim]Br dosages on growth index, chlorophyll content, malondialdehyde (MDA) content, and antioxidant enzyme activity of ryegrass were investigated. The toxic effects of [C14mim]Br on ryegrass growth increased with increasing initial concentration. The high initial concentration treatment resulted in rapid changes in physiological characteristics in ryegrass tissue. [C14mim]+ ions were mainly accumulated in root tissue and partly translocated to the above ground part of ryegrass. [C14mim]+ was observed in the highest concentration (314.35 µg/g in root and 101.42 µg/g in aboveground parts of ryegrass) with 10 mg/L of [C14mim]Br. Our results demonstrated that ryegrass can uptake and accumulate [C14mim]+ and is therefore a suitable species for phytoremediation of trace amount of [C14mim]+ and possibly other ionic liquids.


Subject(s)
Ionic Liquids , Lolium , Biodegradation, Environmental , Imidazoles/toxicity , Ionic Liquids/toxicity
5.
Environ Sci Technol ; 55(20): 14173-14184, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34590827

ABSTRACT

Selective inhibition of photosynthesis is a fundamental strategy to solve the global challenge caused by harmful cyanobacterial blooms. However, there is a lack of specificity of the currently used cyanocides, because most of them act on cyanobacteria by generating nontargeted oxidative stress. Here, for the first time, we find that the simplest ß-diketone, acetylacetone, is a promising specific cyanocide, which acts on Microcystis aeruginosa through targeted binding on bound iron species in the photosynthetic electron transport chain, rather than by oxidizing the components of the photosynthetic apparatus. The targeted binding approach outperforms the general oxidation mechanism in terms of specificity and eco-safety. Given the essential role of photosynthesis in both natural and artificial systems, this finding not only provides a unique solution for the selective control of cyanobacteria but also sheds new light on the ways to modulate photosynthesis.


Subject(s)
Cyanobacteria , Microcystis , Harmful Algal Bloom , Iron , Oxidation-Reduction , Photosynthesis
6.
Sci Total Environ ; 750: 142370, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33182210

ABSTRACT

Plastic debris is ubiquitous in aquatic systems and has been proven vehicles for the transport of various pollutants including trace organic compounds. Nanoplastics have large specific surface area and hydrophobic characteristics and therefore are capable of adsorbing other organic or inorganic chemicals from the environment. Antibiotics, as another class of emerging contaminants, have raised significant research concern in recent years as they pose threats to the ecosytems and human health. Nevertheless, little information is available on the adsorption behaviors of antibiotics onto nano-sized plastics. The toxicity of combined nanoplastics and antibiotics is also largely unknown. In this study, the physicochemical and thermodynamic interactions between representative nanoplastics, which containing a carboxyl functional group of polystyrene nanoplastics (PS-COOH), and typical antibiotic, i.e., ciprofloxacin (CIP) were investigated in a batch adsorption experiment. The specific thermodynamic correlation function of PS-COOH combined with CIP was obtained through isothermal titration microcalorimetry (ITC) analysis. The adsorption kinetics and isotherm of CIP on PS-COOH closely fit the pseudo-second-order kinetic model (r2 = 0.99) and Freundlich isotherm (r2 = 0.99). The ITC results showed that the adsorption reaction of PS-COOH with CIP was a spontaneous exothermic reaction. The adsorption of antibiotics on nanoplastics may aggravate the negative impacts of these two pollutants on aqueous ecosystems, and we hypothesized that would be reflected in the survival rate of model organism of Caenorhabditis elegans when exposed to this combination. This work used a mechanistic approach to unravel the adsorption behavior of antibiotics on nanoplastics and shed light on their potential impact on aquatic ecosystems.


Subject(s)
Plastics , Water Pollutants, Chemical , Adsorption , Ciprofloxacin/toxicity , Ecosystem , Kinetics , Plastics/toxicity , Polystyrenes , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL