Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 674: 713-721, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38950470

ABSTRACT

Amino acids are among the most commercially promising additive solutions for achieving stable zinc anodes. However, greater attention should be given to the limitation arising from the protonation effects induced by high isoelectric point amino acids in the weakly acidic electrolytes of aqueous zinc-ion batteries (AZIBs). In this study, we introduce histidine (HIS) and ethylenediaminetetraacetic acid (EDTA) as hybrid additives into the aqueous electrolyte. Protonated HIS is adsorbed onto the anode interface, inducing uniform deposition and excluding H2O from the inner Helmholtz plane (IHP). Furthermore, the addition of EDTA compensates for the limitation of protonated HIS in excluding solvated H2O. EDTA reconstructs the solvation structure of Zn2+, resulting in a denser zinc deposition morphology. The results demonstrate that the Zn||Zn battery achieved a cycling lifespan exceeding 1480 h at 5 mA cm-2 and 5 mAh cm-2. It also reached over 900 h of cycling at a zinc utilization rate of 70 %. This study provides an innovative perspective for advancing the further development of AZIBs.

2.
Acta Biomater ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964527

ABSTRACT

Intratumor microbes have attracted great attention in cancer research due to its influence on the tumorigenesis, progression and metastasis of cancer. However, the therapeutic strategies targeting intratumoral microbes are still in their infancy. Specific microorganisms, such as Fusobacterium nucleatum (F. nucleatum), are abundant in various cancer and always result in the CRC progression and chemotherapy resistance. Here, a combined anticancer and antibacterial therapeutic strategy is proposed to deliver antitumor drug to the tumors containing intratumor microbiota by the antibacerial polymeric drug carriers. We construct oral tellurium-containing drug carriers using a complex of tellurium-containing polycarbonate with cisplatin (PTE@CDDP). The results show that the particle size of the prepared nanoparticles could be maintained at about 105 nm in the digestive system environment, which is in line with the optimal particle size of oral nanomedicine. In vitro mechanism study indicates that the tellurium-containing polymers are highly effective in killing F.nucleatum through a membrane disruption mechanism. The pharmacokinetic experiments confirmed that PTE@CDDP has the potential function of enhancing the oral bioavailability of cisplatin. Both in vitro and in vivo studies show that PTE@CDDP could inhibit intratumor F.nucleatum and lead to a reduction in cell proliferation and inflammation in the tumor site. Together, the study identifies that the CDDP-loaded tellurium-containing nanoparticles have great potential for treating the F.nucleatum-promoted colorectal cancer (CRC) by combining intratumor microbiota modulation and chemotherapy. The synergistic therapeutic strategy provide new insight into treating various cancers combined with bacterial infection. STATEMENT OF SIGNIFICANCE: The synthesized antibacterial polymer was first employed to remodel the intratumor microbes in tumor microenvironment (TME). Moreover, it was the first report of tellurium-containing polymers against F.nucleatum and employed for treatment of the CRC. A convenient oral dosage form of cisplatin (CDDP)-loaded tellurium-containing nanoparticles (PTE@CDDP) was adopted here, and the synergistic antibacterial/chemotherapy effect occurred. The PTE@CDDP could quickly and completely eliminate F.nucleatum in a safe dose. In the CRC model, PTE@CDDP effectively reversed the inflammation level and even restored the intestinal barrier damaged by F.nucleatum. The ultrasensitive ROS-responsiveness of PTE@CDDP triggered the fast oxidation and efficient drug release of CDDP and thus a highly efficient apoptosis of the tumors. Therefore, the tellurium-containing polymers are expected to serve as novel antibacterial agents in vivo and have great potential in the F.nucleatum-associated cancers. The achievements provided new insight into treating CRC and other cancers combined with bacterial infection.

3.
Carbohydr Polym ; 339: 122235, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823906

ABSTRACT

This study explored the physicochemical properties and structural characteristics of Agrocybe cylindracea polysaccharides at four developmental stages, as well as their dynamic evolution during maturation. Results showed that the polysaccharides from A. cylindracea water extract exhibited similar structural characteristics across all four maturity stages, despite a significant reduction in yields. Four water-soluble heteroglycans, including one high molecular weight (ACPM-Et50-I) and three low molecular weight (ACPM-Et50-II, ACPM-Et60, ACPM-Et80), were isolated from A. cylindracea at each maturity stage. ACPM-Et50-I was identified as branched heterogalactans, while ACPM-Et60 and ACPM-Et80 were branched heteroglucans. However, ACPM-Et50-II was characterized as a branched glucuronofucogalactoglucan at the tide-turning stage but a glucuronofucoglucogalactan at the pileus expansion stage due to the increase of its α-(1 â†’ 6)-D-Galp. In general, although the structural skeletons of most A. cylindracea heteroglycans were similar during maturation as shown by their highly consistent glycosyl linkages, there were still differences in the distribution of some heteroglucans. This work has for the first time reported a glucuronofucogalactoglucan in A. cylindracea and its dynamic evolution during maturation, which may facilitate the potential application of A. cylindracea in food and biomedicine industries.


Subject(s)
Agrocybe , Water , Water/chemistry , Agrocybe/chemistry , Glucans/chemistry , Polysaccharides/chemistry , Molecular Weight
4.
Adv Sci (Weinh) ; : e2400596, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38887178

ABSTRACT

Early-stage nonalcoholic fatty liver disease (NAFLD) is a silent condition, with most cases going undiagnosed, potentially progressing to liver cirrhosis and cancer. A non-invasive and cost-effective detection method for early-stage NAFLD detection is a public health priority but challenging. In this study, an adhesive, soft on-skin sensor with low electrode-skin contact impedance for early-stage NAFLD detection is fabricated. A method is developed to synthesize platinum nanoparticles and reduced graphene quantum dots onto the on-skin sensor to reduce electrode-skin contact impedance by increasing double-layer capacitance, thereby enhancing detection accuracy. Furthermore, an attention-based deep learning algorithm is introduced to differentiate impedance signals associated with early-stage NAFLD in high-fat-diet-fed low-density lipoprotein receptor knockout (Ldlr-/-) mice compared to healthy controls. The integration of an adhesive, soft on-skin sensor with low electrode-skin contact impedance and the attention-based deep learning algorithm significantly enhances the detection accuracy for early-stage NAFLD, achieving a rate above 97.5% with an area under the receiver operating characteristic curve (AUC) of 1.0. The findings present a non-invasive approach for early-stage NAFLD detection and display a strategy for improved early detection through on-skin electronics and deep learning.

5.
Food Funct ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38898712

ABSTRACT

Pulse-based diets are attracting attention for their potential in combating diet-related non-communicable diseases. However, limited research studies have focused on the digestive and fermentative properties of pulses, which are crucial for exerting benefits. Here, we investigated the in vitro digestibility of starch/protein, along with the fermentation characteristics, of eight pulses and their pastes, including white kidney beans, adzuki beans, cowpeas, broad beans, mung beans, chickpeas, white lentils, and yellow peas. The findings indicated that pulse flours and pastes were low GL food (estimated GL < 10) and had a low degree of protein hydrolysis during simulated gastrointestinal digestion. During in vitro fermentation, pulses flours and pastes decreased the fermentation pH, increased the level of short-chain fatty acids (mainly consisting of valeric acid, followed by acetic acid, propionic acid, butyric acid, isobutyric acid, and isovaleric acid), and positively modulated the microbiota composition over time, specifically reducing the ratio of Firmicutes to Bacteroidetes. In addition, we found that boiling could affect the in vitro digestion and fermentation characteristics of pulses, possibly depending on their intrinsic nutrient characteristics. This research could provide a comprehensive summary of the nutrient content, digestibility, and fermentation of eight pulses and their pastes. Guided by factor analysis, for different individuals' consumption, pulses, cowpeas, broad beans, white lentils, and white kidney beans were preferred for diabetic individuals, yellow peas and white lentils were preferred for intestinal homeostasis disorders, and white lentils, broad beans, white kidney beans, and cowpeas were suitable for obese individuals, in which white lentils were considered healthier and suggested for healthy adults.

6.
Anal Chem ; 96(23): 9486-9492, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38814722

ABSTRACT

Osteosarcoma (OS) is the most prevalent primary tumor of bones, often diagnosed late with a poor prognosis. Currently, few effective biomarkers or diagnostic methods have been developed for early OS detection with high confidence, especially for metastatic OS. Tumor-derived extracellular vesicles (EVs) are emerging as promising biomarkers for early cancer diagnosis through liquid biopsy. Here, we report a plasmonic imaging-based biosensing technique, termed subpopulation protein analysis by single EV counting (SPASEC), for size-dependent EV subpopulation analysis. In our SPASEC platform, EVs are accurately sized and counted on plasmonic sensor chips coated with OS-specific antibodies. Subsequently, EVs are categorized into distinct subpopulations based on their sizes, and the membrane proteins of each size-dependent subpopulation are profiled. We measured the heterogeneous expression levels of the EV markers (CD63, BMP2, GD2, and N-cadherin) in each of the EV subsets from both OS cell lines and clinical plasma samples. Using the linear discriminant analysis (LDA) model, the combination of four markers is applied to classify the healthy donors (n = 37), nonmetastatic OS patients (n = 13), and metastatic patients (n = 12) with an area under the curve of 0.95, 0.92, and 0.99, respectively. SPASEC provides accurate EV sensing technology for early OS diagnosis.


Subject(s)
Biomarkers, Tumor , Bone Neoplasms , Extracellular Vesicles , Osteosarcoma , Humans , Osteosarcoma/pathology , Osteosarcoma/diagnosis , Extracellular Vesicles/chemistry , Biomarkers, Tumor/analysis , Biomarkers, Tumor/blood , Bone Neoplasms/diagnosis , Bone Neoplasms/pathology , Cell Line, Tumor , Biosensing Techniques , Discriminant Analysis
7.
Int J Biol Macromol ; 271(Pt 1): 132291, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816296

ABSTRACT

Arabinoxylan (AX) is a potential natural food additive that can enhance the textural properties of food. However, the addition of ascorbic acid (AA) can easily lead to a decrease in the viscosity of AX, which poses a challenge in the development of AX-rich foods. Therefore, the purpose of this study is to elucidate the mechanisms behind the reduction in AX viscosity in the presence of AA. The results indicated that AA could reduce the apparent viscosity and molecular weight of AX without significantly affecting the monosaccharide composition, suggesting a potential mechanism related to the cleavage of AX glycosidic bonds. Interestingly, free radicals were present in the reaction system, and the generation of free radicals under different conditions was consistent with the reduction in apparent viscosity of AX. Furthermore, the reduction in AX apparent viscosity by AA was influenced by various factors including AA concentration, reaction time, temperature, pH, and metal ions. These findings suggested that the mechanism of AX degradation may be due to AA-induced free radical generation, leading to non-selective attacks on glycosidic bonds. Therefore, this study revealed that the potential mechanism behind the reduction in AX viscosity induced by AA involved the generation of ascorbic acid radicals.


Subject(s)
Ascorbic Acid , Molecular Weight , Xylans , Ascorbic Acid/chemistry , Xylans/chemistry , Viscosity , Free Radicals/chemistry , Hydrogen-Ion Concentration , Temperature , Monosaccharides/chemistry
8.
J Agric Food Chem ; 72(22): 12810-12821, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38778434

ABSTRACT

Polysaccharides derived from Agrocybe cylindracea have been demonstrated to exhibit various bioactivities. However, studies on their structural characteristics during the growth process are limited. This study aimed to compare the physicochemical properties and structural characteristics of alkali-extracted polysaccharides from A. cylindracea fruiting bodies (JACP) across four growth stages. Results showed that the extraction yields and protein levels of JACP declined along with the growth of A. cylindracea, while the contents of neutral sugar and glucose increased significantly. However, JACP exhibited structural characteristics similar to those across the four stages. Four polysaccharide subfractions were isolated from each growth stage, including JACP-Et30, JACP-Et50, JACP-Et60, and JACP-Et70. JACP-Et30 from the four stages and JACP-Et50 from the initial three stages were identified as heteroglucans with ß-1,3-d-Glcp and ß-1,6-d-Glcp residues as main chains, respectively. However, other subfractions were considered as ß-1,6-d-glucans containing minor glucuronic acid. These subfractions were predominantly replaced by Glcp residues at the O-3 and O-6 positions. Overall, while JACP exhibited variable physicochemical properties, its structural characteristics remained stable during the growth process, offering new insights into its potential applications in the food and medicinal industries.


Subject(s)
Agrocybe , Fruiting Bodies, Fungal , Polysaccharides , Agrocybe/chemistry , Agrocybe/growth & development , Fruiting Bodies, Fungal/chemistry , Fruiting Bodies, Fungal/growth & development , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Alkalies/chemistry
9.
J Agric Food Chem ; 72(22): 12752-12761, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38779924

ABSTRACT

This study investigated the transformation of polyphenols, including free and bound polyphenols during the fermentation of wolfberry juice by Lactobacillus plantarum NCU137. Results indicated that fermentation significantly increased the free polyphenols content and released bound polyphenols, enhancing the antioxidant activity. Analysis showed that there were 19 free polyphenols, mainly scopoletin, pyrogallol, and dihydroferulic acid, and 16 bound polyphenols, especially p-coumaric acid, feruloyl hexoside, and caffeic acid. A significant correlation was observed between the generation and degradation of polyphenols, and specific bound polyphenols peaked during the 24-48 h fermentation. Furthermore, reduced surface roughness and galacturonic acid content in wolfberry residue, along with increased pectinase activity, suggested substantial pectin degradation in the cell wall, which may be associated with the release of polyphenols, due to pectin serving as carriers for bound polyphenols. The fermentation also increased polyphenol oxidase and peroxidase activity, contributing to polyphenol breakdown. These findings provide insights for improving wolfberry juice production.


Subject(s)
Antioxidants , Fermentation , Fruit and Vegetable Juices , Fruit , Lactobacillus plantarum , Lycium , Polyphenols , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/chemistry , Polyphenols/metabolism , Polyphenols/chemistry , Antioxidants/metabolism , Antioxidants/chemistry , Fruit and Vegetable Juices/analysis , Fruit/chemistry , Fruit/metabolism , Fruit/microbiology , Lycium/chemistry , Lycium/metabolism , Pectins/metabolism , Pectins/chemistry
10.
Food Funct ; 15(11): 5868-5881, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38727142

ABSTRACT

The aim of this study was to investigate the feasibility of soy protein isolate (SPI) gels added with Tremella polysaccharides (TPs) and psyllium husk powder (PHP) as 3D printing inks for developing dysphagia-friendly food and elucidate the potential mechanism of TPs and PHP in enhancing the printing and swallowing performance of SPI gels. The results indicated that the SPI gels with a TP : PHP ratio of 3 : 7 could be effectively used as printing inks to manufacture dysphagia-friendly food. The addition of TPs increased the free water content, resulting in a decrease in the viscosity of the SPI gels, which, in turn, reduced the line width of the 3D-printed product and structural strength of the gel system. The addition of PHP increased disulfide bond interactions and excluded volume interactions, which determined the mechanical strength of SPI gels and increased the line width of the printed product. The synergistic effects between TPs and PHP improved the printing precision and structural stability. This study presents meaningful insights for the utilization of 3D printing in the creation of dysphagia-friendly food using protein-polysaccharide complexes.


Subject(s)
Deglutition Disorders , Gels , Polysaccharides , Printing, Three-Dimensional , Psyllium , Soybean Proteins , Soybean Proteins/chemistry , Polysaccharides/chemistry , Gels/chemistry , Psyllium/chemistry , Humans , Ink , Powders/chemistry , Viscosity
11.
Foods ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38790846

ABSTRACT

The objective of this study was to investigate the feasibility of the mixture of tremella polysaccharide (TP) and citrus pectin (CP) as an emulsifier by evaluating its emulsifying ability/stability. The results showed that the TP:CP ratio of 5:5 (w/w) could effectively act as an emulsifier. CP, owing its lower molecular weight and highly methyl esterification, facilitated the emulsification of oil droplets, thereby promoting the dispersion of droplets. Meanwhile, the presence of TP enhanced the viscosity of emulsion system and increased the electrostatic interactions and steric hindrance, therefore hindering the migration of emulsion droplets, reducing emulsion droplets coalesce, and enhancing emulsion stability. The emulsification and stabilization performances were influenced by the molecular weight, esterified carboxyl groups content, and electric charge of TP and CP, and the potential mechanism involved their impact on the buoyant force of droplet size, viscosity, and steric hindrance of emulsion system. The emulsions stabilized by TP-CP exhibited robust environmental tolerance, but demonstrated sensitivity to Ca2+. Conclusively, the study demonstrated the potential application of the mixture of TP and CP as a natural polysaccharide emulsifier.

12.
Foods ; 13(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38672913

ABSTRACT

Acid hydrolysis serves as the primary method for determining the monosaccharide composition of polysaccharides. However, inappropriate acid hydrolysis conditions may catalyze the breakdown of monosaccharides such as fructans (Fru), generating non-sugar by-products that affect the accuracy of monosaccharide composition analysis. In this study, we determined the monosaccharide recovery rate and non-sugar by-product formation of inulin-type fructan (ITF) and Fru under varied acid hydrolysis conditions using HPAEC-PAD and UPLC-Triple-TOF/MS, respectively. The results revealed significant variations in the recovery rate of Fru within ITF under different hydrolysis conditions, while glucose remained relatively stable. Optimal hydrolysis conditions for achieving a relatively high monosaccharide recovery rate for ITF entailed 80 °C, 2 h, and 1 M sulfuric acid. Furthermore, we validated the stability of Fru during acid hydrolysis. The results indicated that Fru experienced significant degradation with an increasing temperature and acid concentration, with a pronounced decrease observed when the temperature exceeds 100 °C or the H2SO4 concentration surpasses 2 M. Finally, three common by-products associated with Fru degradation, namely 5-hydroxymethyl-2-furaldehyde, 5-methyl-2-furaldehyde, and furfural, were identified in both Fru and ITF hydrolysis processes. These findings revealed that the degradation of Fru under acidic conditions was a vital factor leading to inaccuracies in determining the Fru content during ITF monosaccharide analysis.

13.
Int J Biol Macromol ; 269(Pt 1): 131799, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677677

ABSTRACT

Polysaccharides are the important bioactive macromolecules in Agrocybe cylindracea, but their changes are as yet elusive during developmental process. This study investigated the dynamic changes of polysaccharides from A. cylindracea fruiting body water extract at four developmental stages and its structure characteristics. Results revealed that the polysaccharides from A. cylindracea water extract significantly increased at the pileus expansion stage and the increased fraction could be α-glucan. The further purification and identification indicated that this α-glucan was a glycogen. It had typical morphology of ß particles with a molecular weight of 1375 kDa. Its backbone comprised α-D-(1 â†’ 4)-Glcp and α-D-(1 â†’ 4,6)-Glcp residues at a ratio of 5:1, terminated by α-D-Glcp residue. Rheological behavior suggested that it was a Newtonian fluid at the concentration of 1 %. In addition, despite both the glycogen and natural starch were composed of D-glucose, they exhibited the entirely distinct Maltese cross characteristic and unique crystalline structure. This study is the first to demonstrate the presence of abundant glycogen in the pileus expansion stage of A. cylindracea, which provides new insights on the change patterns of fungal polysaccharides.


Subject(s)
Agrocybe , Glucans , Water , Glucans/chemistry , Water/chemistry , Agrocybe/chemistry , Molecular Weight , Glycogen/metabolism , Glycogen/chemistry , Fruiting Bodies, Fungal/chemistry , Rheology
14.
ACS Appl Mater Interfaces ; 16(10): 12544-12553, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38440797

ABSTRACT

Amino acids are considered effective additives for regulating the electric double layer (EDL) in zinc-ion battery (ZIB) electrolytes. In comparison to their polar counterparts, nonpolar amino acids have received less attention in research. We demonstrated that isoleucine (ILE), benefiting from its nonpolar alkyl chain, emerges as a highly suitable electrolyte additive for aqueous ZIBs. ILE molecules preferentially adsorb onto the anode surface of zinc metal, subsequently creating a locally hydrophobic EDL facilitated by the alkyl chain. On one hand, this enhances the thermodynamic stability at the anode, while on the other hand, it accelerates the desolvation process of zinc ions, thereby improving the kinetics. Benefiting from the unique properties of ILE molecules, Cu//Zn cells with the ILE additive ultimately achieved an extended cycle life of 2600 cycles with an average coulombic efficiency of 99.695%, significantly outperforming other amino acid additives reported in the literature.

15.
Food Funct ; 15(7): 3246-3258, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38446134

ABSTRACT

Barley (Hordeum vulgare L.) is rich in starch and non-starch polysaccharides (NSPs), especially ß-glucan and arabinoxylan. Genotypes and isolation methods may affect their structural characteristics, properties and biological activities. The structure-activity relationships of NSPs in barley have not been paid much attention. This review summarizes the extraction methods, structural characteristics and physicochemical properties of barley polysaccharides. Moreover, the roles of barley ß-glucan and arabinoxylan in the immune system, glucose metabolism, regulation of lipid metabolism and absorption of mineral elements are summarized. This review may help in the development of functional products in barley.


Subject(s)
Hordeum , beta-Glucans , Hordeum/chemistry , Polysaccharides/chemistry , Starch/metabolism , beta-Glucans/chemistry
16.
Carbohydr Polym ; 329: 121782, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38286552

ABSTRACT

Glucans are the most abundant class of macromolecule polymers in fungi, which are commonly found in Ascomycota and Basidiomycota. Fungal glucans are not only essential for cell integrity and function but also crucial for the immense industrial interest in high value applications. They present a variety of structural characteristics at the nanoscale due to the high regulation of genes and the involvement of stochastic processes in synthesis. However, although recent findings have demonstrated the genes of glucans synthesis are relatively conserved across diverse fungi, the formation and organization of diverse glucan structures is still unclear in fungi. Here, we summarize the structural features of fungal glucans and the recent developments in the mechanisms of glucans biosynthesis. Furthermore, we propose the engineering strategies of targeted glucan synthesis and point out the remaining challenges in the synthetic process. Understanding the synthesis process of diverse glucans is necessary for tailoring high value glucan towards specific applications. This engineering strategy contributes to enable the sustainable and efficient production of glucan diversity.


Subject(s)
Basidiomycota , beta-Glucans , Glucans , beta-Glucans/chemistry , Cell Wall/chemistry
17.
ACS Nano ; 18(4): 2685-2707, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38241491

ABSTRACT

Optical metasurfaces, capable of manipulating the properties of light with a thickness at the subwavelength scale, have been the subject of extensive investigation in recent decades. This research has been mainly driven by their potential to overcome the limitations of traditional, bulky optical devices. However, most existing optical metasurfaces are confined to planar and rigid designs, functions, and technologies, which greatly impede their evolution toward practical applications that often involve complex surfaces. The disconnect between two-dimensional (2D) planar structures and three-dimensional (3D) curved surfaces is becoming increasingly pronounced. In the past two decades, the emergence of flexible electronics has ushered in an emerging era for metasurfaces. This review delves into this cutting-edge field, with a focus on both flexible and conformal design and fabrication techniques. Initially, we reflect on the milestones and trajectories in modern research of optical metasurfaces, complemented by a brief overview of their theoretical underpinnings and primary classifications. We then showcase four advanced applications of optical metasurfaces, emphasizing their promising prospects and relevance in areas such as imaging, biosensing, cloaking, and multifunctionality. Subsequently, we explore three key trends in optical metasurfaces, including mechanically reconfigurable metasurfaces, digitally controlled metasurfaces, and conformal metasurfaces. Finally, we summarize our insights on the ongoing challenges and opportunities in this field.

18.
Bioeng Transl Med ; 9(1): e10616, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38193119

ABSTRACT

The characterization of atherosclerotic plaques to predict their vulnerability to rupture remains a diagnostic challenge. Despite existing imaging modalities, none have proven their abilities to identify metabolically active oxidized low-density lipoprotein (oxLDL), a marker of plaque vulnerability. To this end, we developed a machine learning-directed electrochemical impedance spectroscopy (EIS) platform to analyze oxLDL-rich plaques, with immunohistology serving as the ground truth. We fabricated the EIS sensor by affixing a six-point microelectrode configuration onto a silicone balloon catheter and electroplating the surface with platinum black (PtB) to improve the charge transfer efficiency at the electrochemical interface. To demonstrate clinical translation, we deployed the EIS sensor to the coronary arteries of an explanted human heart from a patient undergoing heart transplant and interrogated the atherosclerotic lesions to reconstruct the 3D EIS profiles of oxLDL-rich atherosclerotic plaques in both right coronary and left descending coronary arteries. To establish effective generalization of our methods, we repeated the reconstruction and training process on the common carotid arteries of an unembalmed human cadaver specimen. Our findings indicated that our DenseNet model achieves the most reliable predictions for metabolically vulnerable plaque, yielding an accuracy of 92.59% after 100 epochs of training.

19.
ACS Nano ; 18(5): 3871-3915, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38261716

ABSTRACT

Energy harvesting textiles have emerged as a promising solution to sustainably power wearable electronics. Textile-based solar cells (SCs) interconnected with on-body electronics have emerged to meet such needs. These technologies are lightweight, flexible, and easy to transport while leveraging the abundant natural sunlight in an eco-friendly way. In this Review, we comprehensively explore the working mechanisms, diverse types, and advanced fabrication strategies of photovoltaic textiles. Furthermore, we provide a detailed analysis of the recent progress made in various types of photovoltaic textiles, emphasizing their electrochemical performance. The focal point of this review centers on smart photovoltaic textiles for wearable electronic applications. Finally, we offer insights and perspectives on potential solutions to overcome the existing limitations of textile-based photovoltaics to promote their industrial commercialization.

20.
Curr Cancer Drug Targets ; 24(2): 204-219, 2024.
Article in English | MEDLINE | ID: mdl-37076962

ABSTRACT

BACKGROUND: Natural killer cells play important roles in tumor immune surveillance, and cancer cells must resist this surveillance in order to progress and metastasise. INTRODUCTION: The study aimed to explore the mechanism of how breast cancer cells become resistant to the cytotoxicity of NK cells. METHODS: We established NK-resistant breast cancer cells by exposing MDA-MB-231 cells and MCF-7 cells to NK92 cells. Profiles of lncRNA were compared between the NK-resistant and parental cell lines. Primary NK cells were isolated by MACS, and the NK attacking effect was tested by non-radioactive cytotoxicity. The change in lncRNAs was analyzed by Gene-chip. The interaction between lncRNA and miRNA was displayed by Luciferase assay. The regulation of the gene was verified by QRT-PCR and WB. The clinical indicators were detected by ISH, IH, and ELISA, respectively. RESULTS: UCA1 was found to be significantly up-regulated in both NK-resistant cell lines, and we confirmed such up-regulation on its own to be sufficient to render parental cell lines resistant to NK92 cells. We found that UCA1 up-regulated ULBP2 via the transcription factor CREB1, while it up-regulated ADAM17 by "sponging" the miR-26b-5p. ADAM17 facilitated the shedding of soluble ULBP2 from the surface of breast cancer cells, rendering them resistant to killing by NK cells. UCA1, ADAM17, and ULBP2 were found to be expressed at higher levels in bone metastases of breast cancer than in primary tumors. CONCLUSION: Our data strongly suggest that UCA1 up-regulates ULBP2 expression and shedding, rendering breast cancer cells resistant to killing by NK cells.


Subject(s)
Breast Neoplasms , MicroRNAs , RNA, Long Noncoding , Female , Humans , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Killer Cells, Natural , MicroRNAs/genetics , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...