Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Int J Biol Macromol ; 263(Pt 1): 130229, 2024 Apr.
Article En | MEDLINE | ID: mdl-38378110

Microbial glycosyltransferases efficiently synthesize glucosides and have garnered increasing interest. However, limited regioselectivity has impeded their broad application, particularly in the pharmaceutical industry. In this study, the UDP-glycosyltransferase YjiC from Bacillus licheniformis (BlYjiC) was engineered to achieve the bidirectional regioselective glycosylation of tyrosol and its derivatives. Initially, site-directed saturation mutagenesis was performed on two newly identified substrate-binding cavities in the acceptor pocket of BlYjiC to provide a comprehensive blueprint of the interplay between mutations and function (mutability landscape). Iterative saturation mutagenesis was performed, guided by the mutability landscape. Two highly regioselective mutants M6 (M112L/I325Y/L70R/Q136E/I67E/M77R) and M2' (M112D/I62L) were generated, exhibiting >99 % regioselectivity toward the alcoholic and phenolic hydroxyl of tyrosol, respectively, compared with the wild-type (product mixture: 51:49 %). Both mutants exhibited excellent regioselectivity toward several dihydroxy phenolic substrates, offering valuable biocatalysts for the regioselective synthesis of glucosides. Their application was confirmed in a short synthesis of salidroside (3.6 g/L) and icariside D2 (2.4 g/L), which exhibited near-perfect regioselectivity. This study provides valuable insights into future protein engineering of similar enzymes and opens new avenues for their practical applications.


Glucosides , Glycosyltransferases , Phenols , Phenylethyl Alcohol/analogs & derivatives , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Glycosylation , Glucosides/metabolism
2.
J Agric Food Chem ; 71(32): 12216-12224, 2023 Aug 16.
Article En | MEDLINE | ID: mdl-37526340

Understanding the biosynthetic pathways of fungal pigments can help elucidate their roles in fungal growth processes. Trichodimerol is a unique cage-like dimeric sorbicillinoids pigment that is commonly isolated from many fungi, however, its biosynthesis is just partially clarified. In this study, we report that a biosynthetic gene cluster encoded major facilitator superfamily transporter (StaE) from the fungus Stagonospora sp. SYSU-MS7888 is involved in the formation of trichodimerol, together with several other dimeric sorbicillinoids. Using Aspergillus oryzae NSARI as a heterologous host, we demonstrated that the formation of dimeric sorbicillinoids required co-expression of the transporter StaE with biosynthetic genes (two PKSs and one monooxygenase) that are responsible for constructing the monomer precursor sorbicillinol. Fluorescence microscopy results showed that eGFP-tagged StaE is localized on the endoplasmic reticulum, suggesting that sorbicillinoid dimerizations might be compartmentalized in this organelle.


Ascomycota , Dimerization , Multigene Family
3.
J Agric Food Chem ; 71(25): 9782-9795, 2023 Jun 28.
Article En | MEDLINE | ID: mdl-37310400

Sour rot, caused by Geotrichum citri-aurantii, is a major postharvest disease in citrus and results in significant economic losses. The genus Beauveria is recognized as a promising source of biocontrol agents for agricultural applications. Herein, we established a targeted strategy by integrating genomics and metabolomics to accelerate the discovery of new cyclopeptides from antagonistic metabolites produced by the marine-derived fungus Beauveria felina SYSU-MS7908. As a result, we isolated and characterized seven cyclopeptides, including six new molecules, isaridins I-N (1-6). Their chemical structures and conformational analysis were extensively elucidated using spectroscopic techniques (NMR, HRMS, and MS'MS data), modified Mosher's and Marfey's methods, and single-crystal X-ray diffraction. Notably, isaridin K (3) contains a peptide backbone with an N-methyl-2-aminobutyric acid residue rarely found in natural cyclopeptides. Bioassays showed that compound 2 could significantly inhibit the mycelial growth of G. citri-aurantii by destroying the cell membrane. These findings provide an effective strategy for searching for new fungal peptides for potential agrochemical fungicides and also pave the way for further exploration of applications in agriculture, food, and medicine.


Beauveria , Citrus , Antifungal Agents/pharmacology , Beauveria/chemistry , Peptides, Cyclic/pharmacology , Metabolomics , Citrus/microbiology
4.
Microorganisms ; 10(3)2022 Mar 16.
Article En | MEDLINE | ID: mdl-35336203

Hyperoside (quercetin 3-O-galactoside) exhibits many biological functions, along with higher bioactivities than quercetin. In this study, three UDP-dependent glycosyltransferases (UGTs) were screened for efficient hyperoside synthesis from quercetin. The highest hyperoside production of 58.5 mg·L-1 was obtained in a recombinant Escherichia coli co-expressing UGT from Petunia hybrida (PhUGT) and UDP-glucose epimerase (GalE, a key enzyme catalyzing the conversion of UDP-glucose to UDP-galactose) from E. coli. When additional enzymes (phosphoglucomutase (Pgm) and UDP-glucose pyrophosphorylase (GalU)) were introduced into the recombinant E. coli, the increased flux toward UDP-glucose synthesis led to enhanced UDP-galactose-derived hyperoside synthesis. The efficiency of the recombinant strain was further improved by increasing the copy number of the PhUGT, which is a limiting step in the bioconversion. Through the optimization of the fermentation conditions, the production of hyperoside increased from 245.6 to 411.2 mg·L-1. The production was also conducted using a substrate-fed batch fermentation, and the maximal hyperoside production was 831.6 mg·L-1, with a molar conversion ratio of 90.2% and a specific productivity of 27.7 mg·L-1·h-1 after 30 h of fermentation. The efficient hyperoside synthesis pathway described here can be used widely for the glycosylation of other flavonoids and bioactive substances.

5.
Bioorg Chem ; 120: 105601, 2022 03.
Article En | MEDLINE | ID: mdl-35033816

NADPH-dependent amino acid dehydrogenases (AADHs) are favorable enzymes to construct artificial biosynthetic pathways in whole-cell for high-value noncanonical amino acids (NcAAs) production. Glutamate dehydrogenases (GluDHs) represent attractive candidates for the development of novel NADPH-dependent AADHs. Here, we report the development of a novel NADPH-dependent phenylglycine dehydrogenase by combining active pocket engineering and hinge region engineering of a GluDH from Pseudomonas putida (PpGluDH). The active pocket of PpGluDH was firstly tailored to optimize its binding mode with bulky substrate α-oxobenzeneacetic acid (α-OA), and then, the hinge region was further engineered to tune the protein conformational dynamics, which finally resulted in a mutant M3 (T196A/T121I/L123D) with a 103-fold increase of catalytic efficiency (kcat/Km) toward α-OA. The M3 mutant exhibited high catalytic performance in both in vitro biocatalysis preparation and in vivo biosynthesis of l-phenylglycine, indicating its promising practical applications. Our results demonstrated that co-engineering of the active pocket and hinge region is an effective strategy for developing novel NADPH-dependent AADHs from GluDHs for NcAAs production.


Glutamate Dehydrogenase , NADPH Dehydrogenase , Amino Acid Oxidoreductases/chemistry , Amino Acid Oxidoreductases/metabolism , Amino Acids/metabolism , Glutamate Dehydrogenase/chemistry , Glutamate Dehydrogenase/metabolism , Kinetics , NADP/metabolism , NADPH Dehydrogenase/metabolism
6.
Bioorg Chem ; 116: 105362, 2021 11.
Article En | MEDLINE | ID: mdl-34598089

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a serious threat to global health. One attractive antiviral target is the membrane fusion mechanism employed by the virus to gain access to the host cell. Here we report a robust protein-based fluorescent polarization assay, that mimicking the formation of the six-helix bundle (6-HB) process during the membrane fusion, for the evaluation and screening of SARS-CoV-2 fusion Inhibitors. The IC50 of known inhibitors, HR2P, EK1, and Salvianolic acid C (Sal-C) were measured to be 6.1 nM, 2.5 nM, and 8.9 µM respectively. In addition, we found Sal-A has a slightly lower IC50 (3.9 µM) than Sal-C. Interestingly, simple caffeic acid can also disrupt the formation of 6-HB with a sub-mM concentration. Pilot high throughput screening (HTS) of a small marine natural product library validates the assay with a Z' factor close to 0.8. We envision the current assay provides a convenient way to screen SARS-CoV-2 fusion inhibitors and assess their binding affinity.


Alkenes/analysis , Antiviral Agents/analysis , Fluorescence Polarization , High-Throughput Screening Assays , Peptides/analysis , Polyphenols/analysis , Alkenes/pharmacology , Antiviral Agents/pharmacology , Drug Evaluation, Preclinical , Humans , Molecular Structure , Peptides/pharmacology , Polyphenols/pharmacology , SARS-CoV-2/drug effects
7.
Chembiochem ; 22(8): 1391-1395, 2021 04 16.
Article En | MEDLINE | ID: mdl-33259119

O-GlcNAc transferase (OGT) is involved in many cellular processes, and selective OGT inhibitors are valuable tools to investigate O-GlcNAcylation functions, and could potentially lead to therapeutics. However, high-throughput OGT assays that are suitable for large-scale HTS and can identify inhibitors targeting both acceptor, donor sites, and allosteric binding-sites are still lacking. Here, we report the development of a high-throughput "FP-Tag" OGT assay with bovine serum albumin (BSA) as a low-cost and superior "FP-Tag". With this assay, 2-methyleurotinone was identified as a low-micromolar OGT inhibitor. This type of assay with BSA as "FP-Tag" would find more applications with other glycosyltransferases.


Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , N-Acetylglucosaminyltransferases/antagonists & inhibitors , Alkynes/chemistry , Animals , Biotin/chemistry , Cattle , Enzyme Inhibitors/chemistry , Fluorescent Dyes/chemistry , Humans , Molecular Structure , N-Acetylglucosaminyltransferases/metabolism , Serum Albumin, Bovine/chemistry , Streptavidin/chemistry
8.
Appl Biochem Biotechnol ; 190(3): 880-895, 2020 Mar.
Article En | MEDLINE | ID: mdl-31515673

Recombinant proteins were often expressed with His-tag to simplify the purification process. Among them, transaminase was mostly expressed with fusion tags and widely used in the production of numerous amino moieties. However, the existence of the His-tag has been reported to affect various properties of different recombinant enzymes, while the effect on transaminase was rarely studied. In this paper, we investigated the effect of His-tag on transaminase based on the various activities of 4-aminobutyrate-2-oxoglutarate transaminase (GabT) when it was expressed in vector pETDuet-1. We found that His-tag did not affect the enantioselectivity, but decreased the catalytic activity to different extents according to its existence and location. Native GabT maintained the highest catalytic activity; GabT with C-terminal His-tag showed slightly lower activity than native GabT but about 2.2-fold higher than GabT with N-terminal His-tag. Besides, other fusion tags like T7-tag and S-tag inserted between N-His-tag and GabT can relieve the decreasing effect of His-tag on GabT activity. Furthermore, whole cell catalytic activity of several transaminases was improved by deleting the N-terminal His-tag. This study provided a strategy for the efficient expression of recombinant transaminase with improved catalytic activity and might attract attention to the effect of His-tag on other enzymatic properties.


Histidine/chemistry , Transaminases/metabolism , Catalysis , Enteropeptidase/metabolism , Plasmids , Proteolysis , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Stereoisomerism , Transaminases/chemistry
9.
Appl Microbiol Biotechnol ; 102(10): 4425-4433, 2018 May.
Article En | MEDLINE | ID: mdl-29549447

The objective of this study was to identify and exploit a robust biocatalyst that can be applied in reductive amination for enantioselective synthesis of the competitive herbicide L-phosphinothricin. Applying a genome mining-based library construction strategy, eight NADPH-specific glutamate dehydrogenases (GluDHs) were identified for reductively aminating 2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO) to L-phosphinothricin. Among them, the glutamate dehydrogenase cloned from Pseudomonas putida (PpGluDH) exhibited relatively high catalytic activity and favorable soluble expression. This enzyme was purified to homogeneity for further characterization. The specific activity of PpGluDH was 296.1 U/g-protein, which is significantly higher than the reported value for a GluDH. To the best of our knowledge, there has not been any report on protein engineering of GluDH for PPO-oriented activity. Taking full advantage of the available information and the diverse characteristics of the enzymes in the enzyme library, PpGluDH was engineered by site-directed mutation based on multiple sequence alignment. The mutant I170M, which had 2.1-fold enhanced activity, was successfully produced. When the I170M mutant was applied in the batch production of L-phosphinothricin, it showed markedly improved catalytic efficiency compared with the wild type enzyme. The conversion reached 99% (0.1 M PPO) with an L-phosphinothricin productivity of 1.35 g/h·L, which far surpassed the previously reported level. These results show that PpGluDH I170M is a promising biocatalyst for highly enantioselective synthesis of L-phosphinothricin by reductive amination.


Aminobutyrates/chemical synthesis , Glutamate Dehydrogenase/metabolism , Industrial Microbiology/methods , Amination , Kinetics , Pseudomonas putida/enzymology
...