Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Article En | MEDLINE | ID: mdl-38837680

The recent SarsCov2 pandemic has disrupted healthcare system notably impacting intensive care units (ICU). In severe cases, the immune system is dysregulated, associating signs of hyperinflammation and immunosuppression. In the present work, we investigated, using a joint modeling approach, whether the trajectories of cellular immunological parameters were associated with survival of COVID-19 ICU patients. This study is based on the REA-IMMUNO-COVID cohort including 538 COVID-19 patients admitted to ICU between March 2020 and May 2022. Measurements of monocyte HLA-DR expression (mHLA-DR), counts of neutrophils, of total lymphocytes, and of CD4+ and CD8+ subsets were performed five times during the first month after ICU admission. Univariate joint models combining survival at day 28 (D28), hospital discharge and longitudinal analysis of those biomarkers' kinetics with mixed-effects models were performed prior to the building of a multivariate joint model. We showed that a higher mHLA-DR value was associated with a lower risk of death. Predicted mHLA-DR nadir cutoff value that maximized the Youden index was 5414 Ab/C and led to an AUC = 0.70 confidence interval (95%CI) = [0.65; 0.75] regarding association with D28 mortality while dynamic predictions using mHLA-DR kinetics until D7, D12 and D20 showed AUCs of 0.82 [0.77; 0.87], 0.81 [0.75; 0.87] and 0.84 [0.75; 0.93]. Therefore, the final joint model provided adequate discrimination performances at D28 after collection of biomarker samples until D7, which improved as more samples were collected. After severe COVID-19, decreased mHLA-DR expression is associated with a greater risk of death at D28 independently of usual clinical confounders.

2.
Ann Intensive Care ; 14(1): 76, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762684

BACKGROUND: A 10-day dexamethasone regimen has emerged as the internationally adopted standard-of-care for severe COVID-19 patients. However, the immune response triggered by SARS-CoV-2 infection remains a complex and dynamic phenomenon, leading to various immune profiles and trajectories. The immune status of severe COVID-19 patients following complete dexamethasone treatment has yet to be thoroughly documented. RESULTS: To analyze monocyte HLA-DR expression (mHLA-DR) and CD4 + T lymphocyte count (CD4) in critically ill COVID-19 patients after a dexamethasone course and evaluate their association with 28-day ICU mortality, adult COVID-19 patients (n = 176) with an ICU length of stay of at least 10 days and under dexamethasone treatment were included. Associations between each biomarker value (or in combination) measured at day 10 after ICU admission and 28-day mortality in ICU were evaluated. At day 10, the majority of patients presented decreased values of both parameters. A significant association between low mHLA-DR and 28-day mortality was observed. This association remained significant in a multivariate analysis including age, comorbidities or pre-existing immunosuppression (adjusted Hazard ratio (aHR) = 2.86 [1.30-6.32], p = 0.009). Similar results were obtained with decreased CD4 + T cell count (aHR = 2.10 [1.09-4.04], p = 0.027). When combining these biomarkers, patients with both decreased mHLA-DR and low CD4 presented with an independent and significant elevated risk of 28-day mortality (i.e., 60%, aHR = 4.83 (1.72-13.57), p = 0.001). CONCLUSIONS: By using standardized immunomonitoring tools available in clinical practice, it is possible to identify a subgroup of patients at high risk of mortality at the end of a 10-day dexamethasone treatment. This emphasizes the significance of integrating immune monitoring into the surveillance of intensive care patients in order to guide further immumodulation approaches.

3.
Ann Intensive Care ; 14(1): 59, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38630372

BACKGROUND: The aim of this study is to assess whether a strategy combining spontaneous breathing trial (SBT) with both pressure support (PS) and positive end-expiratory pressure (PEEP) and extended use of post-extubation non-invasive ventilation (NIV) (extensively-assisted weaning) would shorten the time until successful extubation as compared with SBT with T-piece (TP) and post-extubation NIV performed in selected patients as advocated by guidelines (standard weaning), in difficult-to-wean patients from mechanical ventilation. METHODS: The study is a single-center prospective open label, randomized controlled superiority trial with two parallel groups and balanced randomization with a 1:1 ratio. Eligible patients were intubated patients mechanically ventilated for more than 24 h who failed their first SBT using TP. In the extensively-assisted weaning group, SBT was performed with PS (7 cmH2O) and PEEP (5 cmH2O). In case of SBT success, an additional SBT with TP was performed. Failure of this SBT-TP was an additional criterion for post-extubation NIV in this group in addition to other recommended criteria. In the standard weaning group, SBT was performed with TP, and NIV was performed according to international guidelines. The primary outcome criterion was the time between inclusion and successful extubation evaluated with a Cox model with adjustment on randomization strata. RESULTS: From May 2019 to March 2023, 98 patients were included and randomized in the study (49 in each group). Four patients were excluded from the intention-to-treat population (2 in both groups); therefore, 47 patients were analyzed in each group. The extensively-assisted weaning group had a higher median age (68 [58-73] vs. 62 [55-71] yrs.) and similar sex ratio (62% male vs. 57%). Time until successful extubation was not significantly different between extensively-assisted and standard weaning groups (median, 172 [50-436] vs. 95 [47-232] hours, Cox hazard ratio for successful extubation, 0.88 [95% confidence interval: 0.55-1.42] using the standard weaning group as a reference; p = 0.60). All secondary outcomes were not significantly different between groups. CONCLUSION: An extensively-assisted weaning strategy did not lead to a shorter time to successful extubation than a standard weaning strategy. Trial registration The trial was registered on ClinicalTrials.gov (NCT03861117), on March 1, 2019, before the inclusion of the first patient. https://clinicaltrials.gov/study/NCT03861117 .

4.
Blood Purif ; 53(3): 189-199, 2024.
Article En | MEDLINE | ID: mdl-38104538

INTRODUCTION: Low cardiac output and hypovolemia are candidate macrocirculatory mechanisms explanatory of de novo anuria in intensive care unit (ICU) patients undergoing continuous renal replacement therapy (CRRT). We aimed to determine the hemodynamic parameters and CRRT settings associated with the longitudinal course of UO during CRRT. METHODS: This is an ancillary analysis of the PRELOAD CRRT observational, single-center study (NCT03139123). Enrolled adult patients had severe acute kidney injury treated with CRRT for less than 24 h and were monitored with a calibrated continuous cardiac output monitoring device. Hemodynamics (including stroke volume index [SVI] and preload-dependence, identified by continuous cardiac index variation during postural maneuvers), net ultrafiltration (UFNET), and UO were reported 4-hourly, over 7 days. Two study groups were defined at inclusion: non-anuric participants if the cumulative 24 h UO at inclusion was ≥0.05 mL kg-1 h-1, and anuric otherwise. Quantitative data were reported by its median [interquartile range]. RESULTS: Forty-two patients (age 68 [58-76] years) were enrolled. At inclusion, 32 patients (76%) were not anuric. During follow-up, UO decreased significantly in non-anuric patients, with 25/32 (78%) progressing to anuria within 19 [10-50] hours. Mean arterial pressure (MAP) and UFNET did not significantly differ between study groups during follow-up, while SVI and preload-dependence were significantly associated with the interaction of study group and time since inclusion. Higher UFNET flow rates were significantly associated with higher systemic vascular resistances and lower cardiac output during follow-up. Multivariate analyses showed that (1) lower UO was significantly associated with lower SVI, lower MAP, and preload-independence; and (2) higher UFNET was significantly associated with lower UO. CONCLUSIONS: In ICU patients treated with CRRT, those without anuria showed a rapid loss of diuresis after CRRT initiation. Hemodynamic indicators of renal perfusion and effective volemia were the principal determinants of UO during follow-up, in relation with the hemodynamic impact of UFNET setting.


Acute Kidney Injury , Anuria , Continuous Renal Replacement Therapy , Hemodynamic Monitoring , Adult , Humans , Aged , Anuria/complications , Critical Illness/therapy , Ultrafiltration , Acute Kidney Injury/therapy , Acute Kidney Injury/complications , Renal Replacement Therapy
5.
BMC Emerg Med ; 23(1): 129, 2023 11 04.
Article En | MEDLINE | ID: mdl-37924020

BACKGROUND: Inter-facility transport of patients with acute respiratory distress syndrome (ARDS) in the prone position (PP) is a high-risk situation, compared to other strategies. We aimed to quantify the prevalence of complications during transport in PP, compared to transports with veno-venous extracorporeal membrane oxygenation (VV-ECMO) or in the supine position (SP). METHODS: We performed a retrospective, single center cohort study in Lyon university hospital, France. We included patients ≥ 16 years with ARDS (Berlin definition) transported to an ARDS referral center between 01/12/2016 and 31/12/2021. We compared patients transported in PP, to those transported in SP without VV-ECMO, and those transported with VV-ECMO (in SP), by a multidisciplinary and specialized medical transport team, including an emergency physician and an intensivist. The primary outcome was the rate of transport-related complications (hypoxemia, hypotension, cardiac arrest, cannula or tube dislodgement) in each study groups, compared using a Fisher test. RESULTS: One hundred thirty-four patients were enrolled (median PaO2/FiO2 70 [58-82] mmHg), of which 11 (8%) were transported in PP, 44 (33%) with VV-ECMO, and 79 (59%) in SP. The most frequent risk factor for ARDS in the PP group was bacterial pneumonitis, and viral pneumonitis in the other 2 groups. Transport-related complications occurred in 36% (n = 4) of transports in PP, compared to 39% (n = 30) in SP and 14% (n = 6) with VV-ECMO, respectively (p = 0.33). VV-ECMO implantation after transport was not different between SP and PP patients (n = 7, 64% vs. n = 31, 39%, p = 0.19). CONCLUSIONS: In the context of a specialized multi-disciplinary ARDS transport team, transport-related complication rates were similar between patients transported in PP and SP, while there was a trend of lower rates in patients transported with VV-ECMO.


Pneumonia, Viral , Respiratory Distress Syndrome , Humans , Cohort Studies , Retrospective Studies , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/etiology , Hypoxia
6.
Lancet Respir Med ; 11(11): 991-1002, 2023 Nov.
Article En | MEDLINE | ID: mdl-37453445

BACKGROUND: COVID-19-related acute respiratory distress syndrome (ARDS) is associated with a high mortality rate and longer mechanical ventilation. We aimed to assess the effectiveness of ventilation with ultra-low tidal volume (ULTV) compared with low tidal volume (LTV) in patients with COVID-19-related ARDS. METHODS: This study was a multicentre, open-label, parallel-group, randomised trial conducted in ten intensive care units in France. Eligible participants were aged 18 years or older, received invasive mechanical ventilation for COVID-19 (confirmed by RT-PCR), had ARDS according to the Berlin definition, a partial pressure of arterial oxygen to inspiratory oxygen fraction (PaO2/FiO2) ratio of 150 mm Hg or less, a tidal volume (VT) of 6·0 mL/kg predicted bodyweight or less, and received continuous intravenous sedation. Patients were randomly assigned (1:1) using randomisation blocks to receive ULTV (intervention group) aiming for VT of 4·0 mL/kg predicted bodyweight or LTV (control group) aiming for VT 6·0 mL/kg predicted bodyweight. Participants, investigators, and outcome assessors were not masked to group assignment. The primary outcome was a ranked composite score based on all-cause mortality at day 90 as the first criterion and ventilator-free days among patients alive at day 60 as the second criterion. Effect size was computed with the unmatched win ratio, on the basis of pairwise prioritised comparison of primary outcome components between every patient in the ULTV group and every patient in the LTV group. The unmatched win ratio was calculated as the ratio of the number of pairs with more favourable outcome in the ULTV group over the number of pairs with less favourable outcome in the ULTV group. Primary analysis was done in the modified intention-to-treat population, which included all participants who were randomly assigned and not lost to follow-up. This trial is registered with ClinicalTrials.gov, NCT04349618. FINDINGS: Between April 15, 2020, and April 13, 2021, 220 patients were included and five (2%) were excluded. 215 patients were randomly assigned (106 [49%] to the ULTV group and 109 [51%] to the LTV group). 58 (27%) patients were female and 157 (73%) were male. The median age was 68 years (IQR 60-74). 214 patients completed follow-up (one lost to follow-up in the ULTV group) and were included in the modified intention-to-treat analysis. The primary outcome was not significantly different between groups (unmatched win ratio in the ULTV group 0·85 [95% CI 0·60 to 1·19]; p=0·38). 46 (44%) of 105 patients in the ULTV group and 43 (39%) of 109 in the LTV group died by day 90 (absolute difference 4% [-9 to 18]; p=0·52). The rate of severe respiratory acidosis in the first 28 days was higher in the ULTV group than in the LTV group (35 [33%] vs 14 [13%]; absolute difference 20% [95% CI 9 to 31]; p=0·0004). INTERPRETATION: In patients with moderate-to-severe COVID-19-related ARDS, there was no significant difference with ULTV compared with LTV in the composite score based on mortality and ventilator-free days among patients alive at day 60. These findings do not support the systematic use of ULTV in patients with COVID-19-related ARDS. FUNDING: French Ministry of Solidarity and Health and Hospices Civils de Lyon.


COVID-19 , Respiratory Distress Syndrome , Aged , Female , Humans , Male , COVID-19/complications , COVID-19/therapy , Lung , Oxygen , Respiration, Artificial , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Tidal Volume , Treatment Outcome , Middle Aged
7.
Ann Intensive Care ; 13(1): 18, 2023 Mar 13.
Article En | MEDLINE | ID: mdl-36907976

BACKGROUND: The extent of the consequences of an episode of severe acute kidney injury (AKI) on long-term outcome of critically ill patients remain debated. We conducted a prospective follow-up of patients included in a large multicenter clinical trial of renal replacement therapy (RRT) initiation strategy during severe AKI (the Artificial Kidney Initiation in Kidney Injury, AKIKI) to investigate long-term survival, renal outcome and health related quality of life (HRQOL). We also assessed the influence of RRT initiation strategy on these outcomes. RESULTS: Follow-up of patients extended from 60 days to a median of 3.35 years [interquartile range (IQR), 1.89 to 4.09] after the end of initial study. Of the 619 patients included in the AKIKI trial, 316 survived after 60 days. The overall survival rate at 3 years from inclusion was 39.4% (95% CI 35.4 to 43.4). A total of 46 patients (on the 175 with available data on long-term kidney function) experienced worsening of renal function (WRF) at the time of follow-up [overall incidence of 26%, cumulative incidence at 4 years: 20.6% (CI 95% 13.0 to 28.3)]. Fifteen patients required chronic dialysis (5% of patients who survived after day 90). Among the 226 long-term survivors, 80 (35%) answered the EQ-5D questionnaire. The median index value reported was 0.67 (IQR 0.40 to 1.00) indicating a noticeable alteration of quality of life. Initiation strategy for RRT had no effect on any long-term outcome. CONCLUSION: Severe AKI in critically ill patients was associated with a high proportion of death within the first 2 months but less so during long-term follow-up. A quarter of long-term survivors experienced a WRF and suffered from a noticeable impairment of quality of life. Renal replacement therapy initiation strategy was not associated with mortality outcome.

8.
Intensive Care Med Exp ; 11(1): 8, 2023 Feb 17.
Article En | MEDLINE | ID: mdl-36797424

BACKGROUND: Assessing measurement error in alveolar recruitment on computed tomography (CT) is of paramount importance to select a reliable threshold identifying patients with high potential for alveolar recruitment and to rationalize positive end-expiratory pressure (PEEP) setting in acute respiratory distress syndrome (ARDS). The aim of this study was to assess both intra- and inter-observer smallest real difference (SRD) exceeding measurement error of recruitment using both human and machine learning-made lung segmentation (i.e., delineation) on CT. This single-center observational study was performed on adult ARDS patients. CT were acquired at end-expiration and end-inspiration at the PEEP level selected by clinicians, and at end-expiration at PEEP 5 and 15 cmH2O. Two human observers and a machine learning algorithm performed lung segmentation. Recruitment was computed as the weight change of the non-aerated compartment on CT between PEEP 5 and 15 cmH2O. RESULTS: Thirteen patients were included, of whom 11 (85%) presented a severe ARDS. Intra- and inter-observer measurements of recruitment were virtually unbiased, with 95% confidence intervals (CI95%) encompassing zero. The intra-observer SRD of recruitment amounted to 3.5 [CI95% 2.4-5.2]% of lung weight. The human-human inter-observer SRD of recruitment was slightly higher amounting to 5.7 [CI95% 4.0-8.0]% of lung weight, as was the human-machine SRD (5.9 [CI95% 4.3-7.8]% of lung weight). Regarding other CT measurements, both intra-observer and inter-observer SRD were close to zero for the CT-measurements focusing on aerated lung (end-expiratory lung volume, hyperinflation), and higher for the CT-measurements relying on accurate segmentation of the non-aerated lung (lung weight, tidal recruitment…). The average symmetric surface distance between lung segmentation masks was significatively lower in intra-observer comparisons (0.8 mm [interquartile range (IQR) 0.6-0.9]) as compared to human-human (1.0 mm [IQR 0.8-1.3] and human-machine inter-observer comparisons (1.1 mm [IQR 0.9-1.3]). CONCLUSIONS: The SRD exceeding intra-observer experimental error in the measurement of alveolar recruitment may be conservatively set to 5% (i.e., the upper value of the CI95%). Human-machine and human-human inter-observer measurement errors with CT are of similar magnitude, suggesting that machine learning segmentation algorithms are credible alternative to humans for quantifying alveolar recruitment on CT.

9.
Trials ; 23(1): 993, 2022 Dec 12.
Article En | MEDLINE | ID: mdl-36503500

BACKGROUND: Spontaneous breathing trials are performed in critically ill intubated patients in order to assess readiness to be weaned from mechanical ventilation. In patients with difficult weaning (i.e. not extubated after their first SBT), performing SBT using pressure support with or without positive end-expiratory pressure or using T-piece is debated. As ventilatory support during SBT is greater on pressure support than on T-piece and as positive end-expiratory pressure can prevent weaning-induced pulmonary oedema, we hypothesized that their combination and large use of post-extubation non-invasive ventilation may shorten the time until successful extubation as compared with T-piece, without increasing the rate of reintubation. METHODS: SBT-ICU is a monocentric prospective open labelled, randomized controlled superiority trial comparing two mechanical ventilation weaning strategies; i.e. daily spontaneous breathing trials using pressure support with positive end-expiratory pressure or T-piece. The primary outcome will be time until successful extubation (defined by as extubation, without reintubation or death within the seven following days). DISCUSSION: This paper describes the protocol of the SBT-ICU trial. Enrolment of patients in the study is ongoing. TRIAL REGISTRATION: ClinicalTrials.gov NCT03861117. Registered on March 1, 2019, before the beginning of inclusion.


Respiration, Artificial , Ventilator Weaning , Humans , Airway Extubation/adverse effects , Positive-Pressure Respiration , Prospective Studies , Randomized Controlled Trials as Topic , Ventilator Weaning/methods
10.
Front Immunol ; 13: 1022750, 2022.
Article En | MEDLINE | ID: mdl-36389738

Immune responses affiliated with COVID-19 severity have been characterized and associated with deleterious outcomes. These approaches were mainly based on research tools not usable in routine clinical practice at the bedside. We observed that a multiplex transcriptomic panel prototype termed Immune Profiling Panel (IPP) could capture the dysregulation of immune responses of ICU COVID-19 patients at admission. Nine transcripts were associated with mortality in univariate analysis and this 9-mRNA signature remained significantly associated with mortality in a multivariate analysis that included age, SOFA and Charlson scores. Using a machine learning model with these 9 mRNA, we could predict the 28-day survival status with an Area Under the Receiver Operating Curve (AUROC) of 0.764. Interestingly, adding patients' age to the model resulted in increased performance to predict the 28-day mortality (AUROC reaching 0.839). This prototype IPP demonstrated that such a tool, upon clinical/analytical validation and clearance by regulatory agencies could be used in clinical routine settings to quickly identify patients with higher risk of death requiring thus early aggressive intensive care.


COVID-19 , Critical Illness , Humans , RNA, Messenger , Hospitalization , Polymerase Chain Reaction
11.
Crit Care ; 26(1): 195, 2022 07 02.
Article En | MEDLINE | ID: mdl-35780154

BACKGROUND: PEEP selection in severe COVID-19 patients under extracorporeal membrane oxygenation (ECMO) is challenging as no study has assessed the alveolar recruitability in this setting. The aim of the study was to compare lung recruitability and the impact of PEEP on lung aeration in moderate and severe ARDS patients with or without ECMO, using computed tomography (CT). METHODS: We conducted a two-center prospective observational case-control study in adult COVID-19-related patients who had an indication for CT within 72 h of ARDS onset in non-ECMO patients or within 72  h after ECMO onset. Ninety-nine patients were included, of whom 24 had severe ARDS under ECMO, 59 severe ARDS without ECMO and 16 moderate ARDS. RESULTS: Non-inflated lung at PEEP 5 cmH2O was significantly greater in ECMO than in non-ECMO patients. Recruitment induced by increasing PEEP from 5 to 15 cmH2O was not significantly different between ECMO and non-ECMO patients, while PEEP-induced hyperinflation was significantly lower in the ECMO group and virtually nonexistent. The median [IQR] fraction of recruitable lung mass between PEEP 5 and 15 cmH2O was 6 [4-10]%. Total superimposed pressure at PEEP 5 cmH2O was significantly higher in ECMO patients and amounted to 12 [11-13] cmH2O. The hyperinflation-to-recruitment ratio (i.e., a trade-off index of the adverse effects and benefits of PEEP) was significantly lower in ECMO patients and was lower than one in 23 (96%) ECMO patients, 41 (69%) severe non-ECMO patients and 8 (50%) moderate ARDS patients. Compliance of the aerated lung at PEEP 5 cmH2O corrected for PEEP-induced recruitment (CBABY LUNG) was significantly lower in ECMO patients than in non-ECMO patients and was linearly related to the logarithm of the hyperinflation-to-recruitment ratio. CONCLUSIONS: Lung recruitability of COVID-19 pneumonia is not significantly different between ECMO and non-ECMO patients, with substantial interindividual variations. The balance between hyperinflation and recruitment induced by PEEP increase from 5 to 15 cmH2O appears favorable in virtually all ECMO patients, while this PEEP level is required to counteract compressive forces leading to lung collapse. CBABY LUNG is significantly lower in ECMO patients, independently of lung recruitability.


COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Adult , COVID-19/complications , COVID-19/therapy , Case-Control Studies , Humans , Positive-Pressure Respiration/methods , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/therapy , Tomography, X-Ray Computed
12.
Crit Care Resusc ; 24(3): 242-250, 2022 Sep 05.
Article En | MEDLINE | ID: mdl-38046204

Objective: Pregnancy is a risk factor for acute respiratory failure (ARF) following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We hypothesised that SARS-CoV-2 viral load in the respiratory tract might be higher in pregnant intensive care unit (ICU) patients with ARF than in non-pregnant ICU patients with ARF as a consequence of immunological adaptation during pregnancy. Design: Single-centre, retrospective observational case-control study. Setting: Adult level 3 ICU in a French university hospital. Participants: Eligible participants were adults with ARF associated with coronavirus disease 2019 (COVID-19) pneumonia. Main outcome measure: The primary endpoint of the study was viral load in pregnant and non-pregnant patients. Results: 251 patients were included in the study, including 17 pregnant patients. Median gestational age at ICU admission amounted to 28 + 3/7 weeks (interquartile range [IQR], 26 + 1/7 to 31 + 5/7 weeks). Twelve patients (71%) had an emergency caesarean delivery due to maternal respiratory failure. Pregnancy was independently associated with higher viral load (-4.6 ± 1.9 cycle threshold; P < 0.05). No clustering or over-represented mutations were noted regarding SARS-CoV-2 sequences of pregnant women. Emergency caesarean delivery was independently associated with a modest but significant improvement in arterial oxygenation, amounting to 32 ± 12 mmHg in patients needing invasive mechanical ventilation. ICU mortality was significantly lower in pregnant patients (0 v 35%; P < 0.05). Age, Simplified Acute Physiology Score (SAPS) II score, and acute respiratory distress syndrome were independent risk factors for ICU mortality, while pregnancy status and virological variables were not. Conclusions: Viral load was substantially higher in pregnant ICU patients with COVID-19 and ARF compared with non-pregnant ICU patients with COVID-19 and ARF. Pregnancy was not independently associated with ICU mortality after adjustment for age and disease severity.

13.
J Leukoc Biol ; 111(2): 489-496, 2022 02.
Article En | MEDLINE | ID: mdl-33909917

Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature myeloid cells with immunosuppressive properties. In cancer patients, the expression of lectin-type oxidized LDL receptor 1 (LOX-1) on granulocytic MDSC identifies a subset of MDSC that retains the most potent immunosuppressive properties. The main objective of the present work was to explore the presence of LOX-1+ MDSC in bacterial and viral sepsis. To this end, whole blood LOX-1+ cells were phenotypically, morphologically, and functionally characterized. They were monitored in 39 coronavirus disease-19 (COVID-19, viral sepsis) and 48 septic shock (bacterial sepsis) patients longitudinally sampled five times over a 3 wk period in intensive care units (ICUs). The phenotype, morphology, and immunosuppressive functions of LOX-1+ cells demonstrated that they were polymorphonuclear MDSC. In patients, we observed the significant emergence of LOX-1+ MDSC in both groups. The peak of LOX-1+ MDSC was 1 wk delayed with respect to ICU admission. In COVID-19, their elevation was more pronounced in patients with acute respiratory distress syndrome. The persistence of these cells may contribute to long lasting immunosuppression leaving the patient unable to efficiently resolve infections.


COVID-19/immunology , Leukocytes, Mononuclear/immunology , Myeloid-Derived Suppressor Cells/immunology , Respiratory Distress Syndrome/physiopathology , SARS-CoV-2/immunology , Scavenger Receptors, Class E/metabolism , Shock, Septic/immunology , Aged , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Female , Humans , Male , Middle Aged , Shock, Septic/metabolism , Shock, Septic/microbiology , Shock, Septic/pathology
14.
Trials ; 22(1): 692, 2021 Oct 11.
Article En | MEDLINE | ID: mdl-34635128

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a severe complication of COVID-19 pneumonia, with a mortality rate amounting to 34-50% in moderate and severe ARDS, and is associated with prolonged duration of invasive mechanical ventilation. Such as in non-COVID ARDS, harmful mechanical ventilation settings might be associated with worse outcomes. Reducing the tidal volume down to 4 mL kg-1 of predicted body weight (PBW) to provide ultra-low tidal volume ventilation (ULTV) is an appealing technique to minimize ventilator-inducted lung injury. Furthermore, in the context of a worldwide pandemic, it does not require any additional material and consumables and may be applied in low- to middle-income countries. We hypothesized that ULTV without extracorporeal circulation is a credible option to reduce COVID-19-related ARDS mortality and duration of mechanical ventilation. METHODS: The VT4COVID study is a randomized, multi-centric prospective open-labeled, controlled superiority trial. Adult patients admitted in the intensive care unit with COVID-19-related mild to severe ARDS defined by a PaO2/FiO2 ratio ≤ 150 mmHg under invasive mechanical ventilation for less than 48 h, and consent to participate to the study will be eligible. Patients will be randomized into two balanced parallels groups, at a 1:1 ratio. The control group will be ventilated with protective ventilation settings (tidal volume 6 mL kg-1 PBW), and the intervention group will be ventilated with ULTV (tidal volume 4 mL kg-1 PBW). The primary outcome is a composite score based on 90-day all-cause mortality as a prioritized criterion and the number of ventilator-free days at day 60 after inclusion. The randomization list will be stratified by site of recruitment and generated using random blocks of sizes 4 and 6. Data will be analyzed using intention-to-treat principles. DISCUSSION: The purpose of this manuscript is to provide primary publication of study protocol to prevent selective reporting of outcomes, data-driven analysis, and to increase transparency. Enrollment of patients in the study is ongoing. TRIAL REGISTRATION: ClinicalTrials.gov NCT04349618 . Registered on April 16, 2020.


COVID-19 , Respiratory Distress Syndrome , Adult , Extracorporeal Circulation , Humans , Prospective Studies , Randomized Controlled Trials as Topic , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/therapy , SARS-CoV-2
15.
Ann Intensive Care ; 11(1): 95, 2021 Jun 14.
Article En | MEDLINE | ID: mdl-34125314

BACKGROUND: Hemodynamic instability is a frequent complication of continuous renal replacement therapy (CRRT). Postural tests (i.e., passive leg raising in the supine position or Trendelenburg maneuver in the prone position) combined with measurement of cardiac output are highly reliable to identify preload-dependence and may provide new insights into the mechanisms involved in hemodynamic instability related to CRRT (HIRRT). We aimed to assess the prevalence and risk factors of HIRRT associated with preload-dependence in ICU patients. We conducted a single-center prospective observational cohort study in ICU patients with acute kidney injury KDIGO 3, started on CRRT in the last 24 h, and monitored with a PiCCO® device. The primary endpoint was the rate of HIRRT episodes associated with preload-dependence during the first 7 days after inclusion. HIRRT was defined as the occurrence of a mean arterial pressure below 65 mmHg requiring therapeutic intervention. Preload-dependence was assessed by postural tests every 4 h, and during each HIRRT episode. Data are expressed in median [1st quartile-3rd quartile], unless stated otherwise. RESULTS: 42 patients (62% male, age 69 [59-77] year, SAPS-2 65 [49-76]) were included 6 [1-16] h after CRRT initiation and studied continuously for 121 [60-147] h. A median of 5 [3-8] HIRRT episodes occurred per patient, for a pooled total of 243 episodes. 131 episodes (54% [CI95% 48-60%]) were associated with preload-dependence, 108 (44%, [CI95% 38-51%]) without preload-dependence, and 4 were unclassified. Multivariate analysis (using variables collected prior to HIRRT) identified the following variables as risk factors for the occurrence of HIRRT associated with preload-dependence: preload-dependence before HIRRT [odds ratio (OR) = 3.82, p < 0.001], delay since last HIRRT episode > 8 h (OR = 0.56, p < 0.05), lactate (OR = 1.21 per 1-mmol L-1 increase, p < 0.05), cardiac index (OR = 0.47 per 1-L min-1 m-2 increase, p < 0.001) and SOFA at ICU admission (OR = 0.91 per 1-point increase, p < 0.001). None of the CRRT settings was identified as risk factor for HIRRT. CONCLUSIONS: In this single-center study, HIRRT associated with preload-dependence was slightly more frequent than HIRRT without preload-dependence in ICU patients undergoing CRRT. Testing for preload-dependence could help avoiding unnecessary decrease of fluid removal in preload-independent HIRRT during CRRT.

16.
Ann Intensive Care ; 11(1): 56, 2021 Apr 08.
Article En | MEDLINE | ID: mdl-33830370

BACKGROUND: Vascular access for renal replacement therapy (RRT) is routine question in the intensive care unit. Randomized trials comparing jugular and femoral sites have shown similar rate of nosocomial events and catheter dysfunction. However, recent prospective observational data on RRT catheters use are scarce. We aimed to assess the site of RRT catheter, the reasons for catheter replacement, and the complications according to site in a large population of critically ill patients with acute kidney injury. PATIENTS AND METHODS: We performed an ancillary study of the AKIKI study, a pragmatic randomized controlled trial, in which patients with severe acute kidney injury (KDIGO 3 classification) with invasive mechanical ventilation, catecholamine infusion or both were randomly assigned to either an early or a delayed RRT initiation strategy. The present study involved all patients who underwent at least one RRT session. Number of RRT catheters, insertion sites, factors potentially associated with the choice of insertion site, duration of catheter use, reason for catheter replacement, and complications were prospectively collected. RESULTS: Among the 619 patients included in AKIKI, 462 received RRT and 459 were finally included, with 598 RRT catheters. Femoral site was chosen preferentially (n = 319, 53%), followed by jugular (n = 256, 43%) and subclavian (n = 23, 4%). In multivariate analysis, continuous RRT modality was significantly associated with femoral site (OR = 2.33 (95% CI (1.34-4.07), p = 0.003) and higher weight with jugular site [88.9 vs 83.2 kg, OR = 0.99 (95% CI 0.98-1.00), p = 0.03]. Investigator site was also significantly associated with the choice of insertion site (p = 0.03). Cumulative incidence of catheter replacement did not differ between jugular and femoral site [sHR 0.90 (95% CI 0.64-1.25), p = 0.67]. Catheter dysfunction was the main reason for replacement (n = 47), followed by suspected infection (n = 29) which was actually seldom proven (n = 4). No mechanical complication (pneumothorax or hemothorax) occurred. CONCLUSION: Femoral site was preferentially used in this prospective study of RRT catheters in 31 French intensive care units. The choice of insertion site depended on investigating center habits, weight, RRT modality. A high incidence of catheter infection suspicion led to undue replacement.

17.
Crit Care ; 25(1): 140, 2021 04 12.
Article En | MEDLINE | ID: mdl-33845874

BACKGROUND: Since the onset of the pandemic, only few studies focused on longitudinal immune monitoring in critically ill COVID-19 patients with acute respiratory distress syndrome (ARDS) whereas their hospital stay may last for several weeks. Consequently, the question of whether immune parameters may drive or associate with delayed unfavorable outcome in these critically ill patients remains unsolved. METHODS: We present a dynamic description of immuno-inflammatory derangements in 64 critically ill COVID-19 patients including plasma IFNα2 levels and IFN-stimulated genes (ISG) score measurements. RESULTS: ARDS patients presented with persistently decreased lymphocyte count and mHLA-DR expression and increased cytokine levels. Type-I IFN response was initially induced with elevation of IFNα2 levels and ISG score followed by a rapid decrease over time. Survivors and non-survivors presented with apparent common immune responses over the first 3 weeks after ICU admission mixing gradual return to normal values of cellular markers and progressive decrease of cytokines levels including IFNα2. Only plasma TNF-α presented with a slow increase over time and higher values in non-survivors compared with survivors. This paralleled with an extremely high occurrence of secondary infections in COVID-19 patients with ARDS. CONCLUSIONS: Occurrence of ARDS in response to SARS-CoV2 infection appears to be strongly associated with the intensity of immune alterations upon ICU admission of COVID-19 patients. In these critically ill patients, immune profile presents with similarities with the delayed step of immunosuppression described in bacterial sepsis.


COVID-19/blood , Critical Illness , Intensive Care Units/trends , Interferon-alpha/blood , Respiratory Distress Syndrome/blood , Adult , Aged , Biomarkers/blood , COVID-19/epidemiology , COVID-19/immunology , Critical Illness/epidemiology , Female , Hospitalization/trends , Humans , Immunity/immunology , Longitudinal Studies , Male , Middle Aged , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/immunology
18.
Cytometry A ; 99(5): 466-471, 2021 05.
Article En | MEDLINE | ID: mdl-33547747

During the second surge of COVID-19 in France (fall 2020), we assessed the expression of monocyte CD169 (i.e., Siglec-1, one of the numerous IFN-stimulated genes) upon admission to intensive care units of 45 patients with RT-PCR-confirmed SARS-CoV2 pulmonary infection. Overall, CD169 expression was strongly induced on circulating monocytes of COVID-19 patients compared with healthy donors and patients with bacterial sepsis. Beyond its contribution at the emergency department, CD169 testing may be also helpful for patients' triage at the ICU to rapidly reinforce suspicion of COVID-19 etiology in patients with acute respiratory failure awaiting for PCR results for definitive diagnosis.


COVID-19/blood , Intensive Care Units , Monocytes/metabolism , Patient Admission , SARS-CoV-2/pathogenicity , Sialic Acid Binding Ig-like Lectin 1/blood , Adult , Aged , Biomarkers/blood , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , Female , Flow Cytometry , Host-Pathogen Interactions , Humans , Male , Middle Aged , Monocytes/immunology , Monocytes/virology , Predictive Value of Tests , Preliminary Data , Prognosis , Prospective Studies , SARS-CoV-2/immunology , Up-Regulation
19.
Ann Intensive Care ; 10(1): 129, 2020 Oct 01.
Article En | MEDLINE | ID: mdl-33001320

BACKGROUND: Data on respiratory mechanics of COVID-19 ARDS patients are scarce. Respiratory mechanics and response to positive expiratory pressure (PEEP) may be different in obese and non-obese patients. METHODS: We investigated esophageal pressure allowing determination of transpulmonary pressures (PL ) and elastances (EL) during a decremental PEEP trial from 20 to 6 cm H2O in a cohort of COVID-19 ARDS patients. RESULTS: Fifteen patients were investigated, 8 obese and 7 non-obese patients. PEEP ≥ 16 cm H2O for obese patients and PEEP ≥10 cm H2O for non-obese patients were necessary to obtain positive expiratory PL. Change of PEEP did not alter significantly ΔPL or elastances in obese patients. However, in non-obese patients lung EL  and ΔPL increased significantly with PEEP increase. Chest wall EL was not affected by PEEP variations in both groups.

20.
J Crit Care ; 60: 169-176, 2020 12.
Article En | MEDLINE | ID: mdl-32854088

PURPOSE: The aim of this study was to assess whether the computed tomography (CT) features of COVID-19 (COVID+) ARDS differ from those of non-COVID-19 (COVID-) ARDS patients. MATERIALS AND METHODS: The study is a single-center prospective observational study performed on adults with ARDS onset ≤72 h and a PaO2/FiO2 ≤ 200 mmHg. CT scans were acquired at PEEP set using a PEEP-FiO2 table with VT adjusted to 6 ml/kg predicted body weight. RESULTS: 22 patients were included, of whom 13 presented with COVID-19 ARDS. Lung weight was significantly higher in COVID- patients, but all COVID+ patients presented supranormal lung weight values. Noninflated lung tissue was significantly higher in COVID- patients (36 ± 14% vs. 26 ± 15% of total lung weight at end-expiration, p < 0.01). Tidal recruitment was significantly higher in COVID- patients (20 ± 12 vs. 9 ± 11% of VT, p < 0.05). Lung density histograms of 5 COVID+ patients with high elastance (type H) were similar to those of COVID- patients, while those of the 8 COVID+ patients with normal elastance (type L) displayed higher aerated lung fraction.


COVID-19/diagnostic imaging , Image Processing, Computer-Assisted/methods , Respiratory Distress Syndrome/diagnostic imaging , Tomography, X-Ray Computed , Adult , Aged , Case-Control Studies , Female , Humans , Lung , Lung Compliance , Male , Middle Aged , Positive-Pressure Respiration , Prospective Studies
...