Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Res ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986955

ABSTRACT

We estimated the severity of cerebellar ataxia by analyzing gait rhythm. We measured the step times in patients with pure cerebellar ataxia and healthy controls and then analyzed the distribution of the ratios of adjacent times. Gait rhythm displayed the best adaptation when expressed as the sum of the power law and lognormal distributions in both groups, and the groups could be distinguished by the exponent of the power law distribution, reflecting the fractal property of gait rhythm. Gait rhythm might reflect different features of impairment in patients with cerebellar ataxia, making it a useful continuous scale for cerebellar ataxia.

2.
Cell Rep ; 43(3): 113884, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38458194

ABSTRACT

Primate hands house an array of mechanoreceptors and proprioceptors, which are essential for tactile and kinematic information crucial for daily motor action. While the regulation of these somatosensory signals is essential for hand movements, the specific central nervous system (CNS) location and mechanism remain unclear. Our study demonstrates the attenuation of somatosensory signals in the cuneate nucleus during voluntary movement, suggesting significant modulation at this initial relay station in the CNS. The attenuation is comparable to the cerebral cortex but more pronounced than in the spinal cord, indicating the cuneate nuclei's role in somatosensory perception modulation during movement. Moreover, our findings suggest that the descending motor tract may regulate somatosensory transmission in the cuneate nucleus, enhancing relevant signals and suppressing unnecessary ones for the regulation of movement. This process of recurrent somatosensory modulation between cortical and subcortical areas could be a basic mechanism for modulating somatosensory signals to achieve active perception.


Subject(s)
Hand , Medulla Oblongata , Animals , Medulla Oblongata/physiology , Spinal Cord/physiology , Touch , Primates , Somatosensory Cortex/physiology , Movement/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...