Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Front Immunol ; 15: 1308238, 2024.
Article in English | MEDLINE | ID: mdl-38660313

ABSTRACT

Introduction: Limited data were available on the effectivenessfour years after Homo or Hetero prime-boost with 10 µg Hansenulapolymorpha recombinant hepatitis B vaccine (HepB-HP) and 20 µgChinese hamster ovary cell HepB (HepB-CHO). Methods: A crosssectional study was performed in maternalhepatitis B surface antigen (HBsAg)-negative children whoreceived one dose of 10 µg HepB-HP at birth, Homo or Heteroprime-boost with 10 µg HepB-HP and 20 µg HepB-CHO at 1 and 6months. HBsAg and hepatitis B surface antibody (anti-HBs) fouryears after immunization were quantitatively detected by achemiluminescent microparticle immunoassay (CMIA). Results: A total of 359 children were included; 119 childrenreceived two doses of 10 µg HepB-HP and 120 children receivedtwo doses of 20 µg HepB-CHO, called Homo prime-boost; 120children received Hetero prime-boost with 10 µg HepB-HP and 20µg HepB-CHO. All children were HBsAg negative. The geometricmean concentration (GMC) and overall seropositivity rate (SPR) ofanti-HBs were 59.47 (95%CI: 49.00 - 72.16) mIU/ml and 85.51%(307/359). Nearly 15% of the study subjects had an anti-HBsconcentration < 10 mIU/ml and 5.01% had an anti-HBsconcentration ≤ 2.5 mIU/ml. The GMC of the 20 µg CHO Homoprime-boost group [76.05 (95%CI: 54.97 - 105.19) mIU/ml] washigher than that of the 10 µg HP Homo group [45.86 (95%CI:31.94 - 65.84) mIU/ml] (p = 0.035). The GMCs of the Heteroprime-boost groups (10 µg HP-20 µg CHO and 20 µg CHO-10 µgHP) were 75.86 (95% CI: 48.98 - 107.15) mIU/ml and 43.65(95%CI: 27.54 - 69.18) mIU/ml, respectively (p = 0.041). Aftercontrolling for sex influence, the SPR of the 20 µg CHO Homoprime-boost group was 2.087 times than that of the 10 µg HPHomo group. Discussion: The HepB booster was not necessary in the generalchildren, Homo/Hetero prime-boost with 20 µg HepB-CHO wouldincrease the anti-HBs concentration four years after immunization,timely testing and improved knowledge about the self-pay vaccinewould be good for controlling hepatitis B.


Subject(s)
Cricetulus , Hepatitis B Antibodies , Hepatitis B Surface Antigens , Hepatitis B Vaccines , Hepatitis B , Immunization, Secondary , Vaccines, Synthetic , Humans , Hepatitis B Vaccines/immunology , Hepatitis B Vaccines/administration & dosage , Hepatitis B Surface Antigens/immunology , Female , Animals , Male , Hepatitis B/prevention & control , Hepatitis B/immunology , Hepatitis B Antibodies/blood , Hepatitis B Antibodies/immunology , CHO Cells , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Cross-Sectional Studies , Child , Infant , Child, Preschool , Hepatitis B virus/immunology
2.
Int J Mol Sci ; 23(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35216359

ABSTRACT

Leaves, considered as the 'source' organs, depend on the development stages because of the age-dependent photosynthesis and assimilation of leaves. However, the molecular mechanisms of age-dependent limitations on the function of leaves are seldom reported. In the present study, the photosynthesis-related characteristics and photoassimilates were investigated in grape leaves at six different age groups (Ll to L6) at micro-morphological, biochemical, and molecular levels. These results showed lower expression levels of genes associated with stomatal development, and chl biosynthesis resulted in fewer stomata and lowered chlorophyll a/b contents in L1 when compared to L3 and L5. The DEGs between L5 and L3/L1 were largely distributed at stomatal movement, carbon fixation, and sucrose and starch metabolism pathways, such as STOMATAL ANION CHANNEL PROTEIN 1 (SLAC1), FRUCTOSE-1,6-BISPHOSPHATE ALDOLASE (FBA1), SUCROSE-PHOSPHATE SYNTHASE (SPP1), and SUCROSE-PHOSPHATE PHOSPHATASE (SPS2, 4). These genes could be major candidate genes leading to increased photosynthesis capacity and sugar content in L5. The accumulation of starch grains in the chloroplast and palisade tissue of L5 and higher transcription levels of genes related to starch biosynthesis in L5 further supported the high ability of L5 to produce photoassimilates. Hence, our results provide insights for understanding different photosynthetic functions in age-dependent leaves in grape plants at the molecular level.


Subject(s)
Photosynthesis/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Sugars/metabolism , Transcription, Genetic/genetics , Vitis/genetics , Vitis/metabolism , Carbohydrate Metabolism/genetics , Carbohydrates/genetics , Chlorophyll/genetics , Chlorophyll/metabolism , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Sucrose/metabolism
3.
J Inflamm Res ; 14: 3405-3417, 2021.
Article in English | MEDLINE | ID: mdl-34305405

ABSTRACT

OBJECTIVE: To explore the effect of platelet-derived growth factor (PDGF) on oral mucosal fibroblast autophagy and further elucidate the molecular mechanism by which PDGF-BB regulates the biological behavior of oral mucosal fibroblasts by inducing autophagy. METHODS: Primary oral mucosal fibroblasts were isolated and cultured by the tissue block and trypsin methods and identified by indirect immunofluorescence vimentin detection. We detected the autophagy marker Beclin-1 and fibrosis marker Col-I of the primary oral mucosal fibroblasts at different time points after stimulating the fibroblasts with different PDGF-BB concentrations by Western blotting and determined the best experimental concentration and stimulation time of PDGF-BB. Then, indirect immunofluorescence, Western blotting, and quantitative real-time polymerase chain reaction (PCR) were used to detect the effect of PDGF-BB on the expression of autophagy-related and fibrotic proteins before and after 3-methyladenine (3-MA) intervention. Additionally, the effect of 3-MA on the proliferation and migration of primary oral mucosal fibroblasts stimulated by PDGF-BB was detected by the MTT method and a scratch experiment. The effect of PDGF-BB on Beclin-1 and phosphatidylinositol-3 kinase class 3 (PI3KC3) interaction was detected by co-immunoprecipitation. RESULTS: The results demonstrated that PDGF-BB could induce autophagy of the oral mucosal fibroblasts, showing a certain time and dose correlation. It induced cell autophagy through Beclin-1 and PI3KC3 interaction to promote the proliferation, migration, conversion, and collagen synthesis of the fibroblasts. However, 3-MA inhibited the combination of Beclin-1 and PI3KC3 and weakened the fibroblasts' proliferation, migration, conversion, and collagen synthesis activities. CONCLUSION: Overall, PDGF-BB induces autophagy through the Beclin-1 pathway to regulate the biological behavior of oral mucosal fibroblasts.

4.
Cancer Biomark ; 30(4): 407-415, 2021.
Article in English | MEDLINE | ID: mdl-33492283

ABSTRACT

OBJECTIVE: To explore the pathogenesis of oral submucosal fibrosis (OSF) by analyzing the impact of Platelet Derived Growth Factor (PDGF)-BB on oral mucosal fibroblasts (FB) and PDGFR-ß/Phosphoinositide 3-kinase (PI3K)/serine/threonine protein kinase (AKT) signaling pathway. METHODS: The isolated and purified oral mucosal fibroblasts were divided into four groups: the control group (CON, 10% FBS DMEM), the PDGF-BB group (40 ng/ml PDGF-BB), the PDGF-BB+IMA group (40 ng/ml PDGF-BB and 60 µmol/L IMA), and the PDGF-BB+LY294002 group (40 ng/ml PDGF-BB and 48 µmol/L LY294002). Primary human FB cells were isolated and cultured for detecting the effects of PDGF-BB on α-smooth muscle actin (α-SMA) by indirect immunofluorescence. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, Thiazolyl Blue Tetrazolium Bromide (MTT) method and scratch test were used to detect the proliferation and migration of FB. Western blots were used to detect the synthesis of type I collagen (Col I) and the expression of PDGFR-ß/PI3K/AKT signaling pathway-related proteins. The effects of PDGFR-ß inhibitor and PI3K inhibitor were observed. RESULTS: Compared with group CON, group IMA, and group LY294002, α-SMA was upregulated in group PDGF-BB (p< 0.05), with higher OD490 nm value (p< 0.05), narrower average scratch width, and higher relative cell migration rate (p< 0.05). The expression levels of Col I, p-PDGFR-ß, p-PI3K, and p-AKT were higher in group PDGF-BB (p< 0.05). CONCLUSIONS: PDGF-BB induces FB to transform into myofibroblasts (MFB) through the PDGFR-ß/PI3K/AKT signaling pathway, and promotes the proliferation, migration, and collagen synthesis.


Subject(s)
Becaplermin/metabolism , Collagen/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Cell Proliferation/physiology , Humans , Signal Transduction
5.
Oncotarget ; 8(43): 74806-74819, 2017 Sep 26.
Article in English | MEDLINE | ID: mdl-29088825

ABSTRACT

Oral submucous fibrosis (OSF) is a chronic, insidious disease. The presence of autoantibodies in sera of OSF patients is the most characteristic and direct evidence of OSF being an autoimmune disease. To identify the specific autoantigens which could contribute to antibody production, the Human Proteome Microarrays composed of 19000 full-length unique proteins were employed. 45 proteins correlated with OSF were identified. To validate these results, we used ELISA to validate 28 OSF-associated autoantigens in extended samples. 8 autoantigens were positive in OSF serum with high frequency compared to the healthy controls. Moreover, the mRNA expression of 8 candidates was up-regulated in OSF oral submucous tissues; among them, the protein level of PTMA, the one with the highest positive frequency, was also increased. Through searching the Bioinformatics Public Database and performing the Spearman's rank correlation analysis, we observed that PTMA was positively correlated with fibrosis-related TGFß1 and SMAD4, the downstream gene of TGFß1. In TGFß1-induced fibrosis model of primary human oral submucous fibroblast, PTMA knockdown reversed TGFß1-induced fibrosis process through inhibiting the cell viability and proliferation of fibroblast, reducing the protein levels of PTMA, Collagen I, α-SMA and MMP9 and increasing the protein levels of SMAD4. In contrast, PTMA overexpression enhanced TGFß1-induced fibrosis process. Taken together, PTMA is involved in TGFß1-induced fibrosis in the primary human submucous fibroblast by regulating the expression of ECM-related markers and the downstream genes of TGFß1. In conclusion, PTMA presents an essential autoantigen during OSF process; targeting PTMA might be a promising strategy for OSF treatment.

SELECTION OF CITATIONS
SEARCH DETAIL