Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Exp Hematol Oncol ; 13(1): 77, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103908

ABSTRACT

BACKGROUND: Radiotherapy can modulate systemic antitumor immunity, while immune status in the tumor microenvironment also influences the efficacy of radiotherapy, but relevant molecular mechanisms are poorly understood in lung adenocarcinoma (LUAD). METHODS: In this study, we innovatively proposed a radiotherapy response classification for LUAD, and discovered ESYT3 served as a tumor suppressor and radioimmune response sensitizer. ESYT3 expression was measured both in radioresistant and radiosensitive LUAD tissues and cells. The influence of ESYT3 on radiotherapy sensitivity and resistance was then investigated. Interaction between ESYT3 and STING was evaluated through multiple immunofluorescent staining and coimmunoprecipitation, and downstream molecules were further analyzed. In vivo models were constructed to assess the combination treatment efficacy of ESYT3 overexpression with radiotherapy. RESULTS: We found that radioresistant subtype presented immunosuppressive state and activation of DNA damage repair pathways than radiosensitive subtype. ESYT3 expression was remarkably attenuated both in radioresistant LUAD tissues and cells. Clinically, low ESYT3 expression was linked with radioresistance. Overexpression of ESYT3 enabled to alleviate radioresistance, and sensitize LUAD cells to DNA damage induced by irradiation. Mechanically, ESYT3 directly interacted with STING, and activated cGAS-STING signaling, subsequently increasing the generation of type I IFNs as well as downstream chemokines CCL5 and CXCL10, thus improving radioimmune responses. The combination treatment of ESYT3 overexpression with radiotherapy had a synergistic anticancer effect in vitro and in vivo. CONCLUSIONS: In summary, low ESYT3 expression confers resistance to radiotherapy in LUAD, and its overexpression can improve radioimmune responses through activating cGAS-STING-dependent pathway, thus providing an alternative combination therapeutic strategy for LUAD patients.

2.
J Immunother Cancer ; 11(10)2023 10.
Article in English | MEDLINE | ID: mdl-37865396

ABSTRACT

BACKGROUND: The predictive efficacy of current biomarker of immune checkpoint inhibitors (ICIs) is not sufficient. This study investigated the causality between radiomic biomarkers and immunotherapy response status in patients with stage IB-IV non-small cell lung cancer (NSCLC), including its biological context for ICIs treatment response prediction. METHODS: CT images from 319 patients with pretreatment NSCLC receiving immunotherapy between January 2015 and November 2021 were retrospectively collected and composed a discovery (n=214), independent validation (n=54), and external test cohort (n=51). A set of 851 features was extracted from tumorous and peritumoral volumes of interest (VOIs). The reference standard is the durable clinical benefit (DCB, sustained disease control for more than 6 months assessed via radiological evaluation). The predictive value of combined radiomic signature (CRS) for pathological response was subsequently assessed in another cohort of 98 patients with resectable NSCLC receiving ICIs preoperatively. The association between radiomic features and tumor immune landscape on the online data set (n=60) was also examined. A model combining clinical predictor and radiomic signatures was constructed to improve performance further. RESULTS: CRS discriminated DCB and non-DCB patients well in the training and validation cohorts with an area under the curve (AUC) of 0.82, 95% CI: 0.75 to 0.88, and 0.75, 95% CI: 0.64 to 0.87, respectively. In this study, the predictive value of CRS was better than programmed cell death ligand-1 (PD-L1) expression (AUC of PD-L1 subset: 0.59, 95% CI: 0.50 to 0.69) or clinical model (AUC: 0.66, 95% CI: 0.51 to 0.81). After combining the clinical signature with CRS, the predictive performance improved further with an AUC of 0.837, 0.790 and 0.781 in training, validation and D2 cohorts, respectively. When predicting pathological response, CRS divided patients into a major pathological response (MPR) and non-MPR group (AUC: 0.76, 95% CI: 0.67 to 0.81). Moreover, CRS showed a promising stratification ability on overall survival (HR: 0.49, 95% CI: 0.27 to 0.89; p=0.020) and progression-free survival (HR: 0.43, 95% CI: 0.26 to 0.74; p=0.002). CONCLUSION: By analyzing both tumorous and peritumoral regions of CT images in a radiomic strategy, we developed a non-invasive biomarker for distinguishing responders of ICIs therapy and stratifying their survival outcome efficiently, which may support the clinical decisions on the use of ICIs in advanced as well as patients with resectable NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Retrospective Studies , B7-H1 Antigen , Biomarkers, Tumor , Immunotherapy/methods
3.
J Cancer Res Clin Oncol ; 149(17): 15623-15640, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37656244

ABSTRACT

BACKGROUND: The advantages of radiotherapy for head and neck squamous cell carcinoma (HNSCC) depend on the radiation sensitivity of the patient. Here, we established and verified radiological factor-related gene signature and built a prognostic risk model to predict whether radiotherapy would be beneficial. METHODS: Data from The Cancer Genome Atlas, Gene Expression Omnibus, and RadAtlas databases were subjected to LASSO regression, univariate COX regression, and multivariate COX regression analyses to integrate genomic and clinical information from patients with HNSCC. HNSCC radiation-related prognostic genes were identified, and patients classified into high- and low-risk groups, based on risk scores. Variations in radiation sensitivity according to immunological microenvironment, functional pathways, and immunotherapy response were investigated. Finally, the expression of HNSCC radiation-related genes was verified by qRT-PCR. RESULTS: We built a clinical risk prediction model comprising a 15-gene signature and used it to divide patients into two groups based on their susceptibility to radiation: radiation-sensitive and radiation-resistant. Overall survival was significantly greater in the radiation-sensitive than the radiation-resistant group. Further, our model was an independent predictor of radiotherapy response, outperforming other clinical parameters, and could be combined with tumor mutational burden, to identify the target population with good predictive value for prognosis at 1, 2, and 3 years. Additionally, the radiation-resistant group was more vulnerable to low levels of immune infiltration, which are significantly associated with DNA damage repair, hypoxia, and cell cycle regulation. Tumor Immune Dysfunction and Exclusion scores also suggested that the resistant group would respond less favorably to immunotherapy. CONCLUSIONS: Our prognostic model based on a radiation-related gene signature has potential for application as a tool for risk stratification of radiation therapy for patients with HNSCC, helping to identify candidates for radiation therapy and overcome radiation resistance.


Subject(s)
DNA Repair , Head and Neck Neoplasms , Humans , Prognosis , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Databases, Factual , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/radiotherapy , Tumor Microenvironment
4.
Semin Cancer Biol ; 91: 35-49, 2023 06.
Article in English | MEDLINE | ID: mdl-36868394

ABSTRACT

Esophageal cancer is a unique and complex heterogeneous malignancy, with substantial tumor heterogeneity: at the cellular levels, tumors are composed of tumor and stromal cellular components; at the genetic levels, they comprise genetically distinct tumor clones; at the phenotypic levels, cells in distinct microenvironmental niches acquire diverse phenotypic features. This heterogeneity affects almost every process of esophageal cancer progression from onset to metastases and recurrence, etc. Intertumoral and intratumoral heterogeneity are major obstacles in the treatment of esophageal cancer, but also offer the potential to manipulate the heterogeneity themselves as a new therapeutic strategy. The high-dimensional, multi-faceted characterization of genomics, epigenomics, transcriptomics, proteomics, metabonomics, etc. of esophageal cancer has opened novel horizons for dissecting tumor heterogeneity. Artificial intelligence especially machine learning and deep learning algorithms, are able to make decisive interpretations of data from multi-omics layers. To date, artificial intelligence has emerged as a promising computational tool for analyzing and dissecting esophageal patient-specific multi-omics data. This review provides a comprehensive review of tumor heterogeneity from a multi-omics perspective. Especially, we discuss the novel techniques single-cell sequencing and spatial transcriptomics, which have revolutionized our understanding of the cell compositions of esophageal cancer and allowed us to determine novel cell types. We focus on the latest advances in artificial intelligence in integrating multi-omics data of esophageal cancer. Artificial intelligence-based multi-omics data integration computational tools exert a key role in tumor heterogeneity assessment, which will potentially boost the development of precision oncology in esophageal cancer.


Subject(s)
Artificial Intelligence , Esophageal Neoplasms , Humans , Multiomics , Precision Medicine/methods , Genomics/methods , Esophageal Neoplasms/genetics
5.
Front Immunol ; 13: 944378, 2022.
Article in English | MEDLINE | ID: mdl-36177001

ABSTRACT

Background: Autophagy, a key regulator of programmed cell death, is critical for maintaining the stability of the intracellular environment. Increasing evidence has revealed the clinical importance of interactions between autophagy and immune status in lung adenocarcinoma. The present study evaluated the potential of autophagy-immune-derived biomarkers to predict prognosis and therapeutic response in patients with lung adenocarcinoma. Methods: Patients from the GSE72094 dataset were randomized 7:3 to a training set and an internal validation set. Three independent cohorts, TCGA, GSE31210, and GSE37745, were used for external verification. Unsupervised hierarchical clustering based on autophagy- and immune-associated genes was used to identify autophagy- and immune-associated molecular patterns, respectively. Significantly prognostic autophagy-immune genes were identified by LASSO analysis and by univariate and multivariate Cox regression analyses. Differences in tumor immune microenvironments, functional pathways, and potential therapeutic responses were investigated to differentiate high-risk and low-risk groups. Results: High autophagy status and high immune status were associated with improved overall survival. Autophagy and immune subtypes were merged into a two-dimensional index to characterize the combined prognostic classifier, with 535 genes defined as autophagy-immune-related differentially expressed genes (DEGs). Four genes (C4BPA, CD300LG, CD96, and S100P) were identified to construct an autophagy-immune-related prognostic risk model. Survival and receiver operating characteristic (ROC) curve analyses showed that this model was significantly prognostic of survival. Patterns of autophagy and immune genes differed in low- and high-risk patients. Enrichment of most immune infiltrating cells was greater, and the expression of crucial immune checkpoint molecules was higher, in the low-risk group. TIDE and immunotherapy clinical cohort analysis predicted that the low-risk group had more potential responders to immunotherapy. GO, KEGG, and GSEA function analysis identified immune- and autophagy-related pathways. Autophagy inducers were observed in patients in the low-risk group, whereas the high-risk group was sensitive to autophagy inhibitors. The expression of the four genes was assessed in clinical specimens and cell lines. Conclusions: The autophagy-immune-based gene signature represents a promising tool for risk stratification in patients with lung adenocarcinoma, guiding individualized targeted therapy or immunotherapy.


Subject(s)
Adenocarcinoma of Lung , Autophagy , Lung Neoplasms , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/therapy , Antigens, CD , Humans , Immune Checkpoint Proteins , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Prognosis , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL