Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BME Front ; 2022: 9814824, 2022.
Article in English | MEDLINE | ID: mdl-37850179

ABSTRACT

Objective. Objective of this work is the development and evaluation of a cortical parcellation framework based on tractography-derived brain structural connectivity. Impact Statement. The proposed framework utilizes novel spatial-graph representation learning methods for solving the task of cortical parcellation, an important medical image analysis and neuroscientific problem. Introduction. The concept of "connectional fingerprint" has motivated many investigations on the connectivity-based cortical parcellation, especially with the technical advancement of diffusion imaging. Previous studies on multiple brain regions have been conducted with promising results. However, performance and applicability of these models are limited by the relatively simple computational scheme and the lack of effective representation of brain imaging data. Methods. We propose the Spatial-graph Convolution Parcellation (SGCP) framework, a two-stage deep learning-based modeling for the graph representation brain imaging. In the first stage, SGCP learns an effective embedding of the input data through a self-supervised contrastive learning scheme with the backbone encoder of a spatial-graph convolution network. In the second stage, SGCP learns a supervised classifier to perform voxel-wise classification for parcellating the desired brain region. Results. SGCP is evaluated on the parcellation task for 5 brain regions in a 15-subject DWI dataset. Performance comparisons between SGCP, traditional parcellation methods, and other deep learning-based methods show that SGCP can achieve superior performance in all the cases. Conclusion. Consistent good performance of the proposed SGCP framework indicates its potential to be used as a general solution for investigating the regional/subregional composition of human brain based on one or more connectivity measurements.

2.
Br J Cancer ; 125(8): 1111-1121, 2021 10.
Article in English | MEDLINE | ID: mdl-34365472

ABSTRACT

BACKGROUND AND AIMS: Computed tomography (CT) scan is frequently used to detect hepatocellular carcinoma (HCC) in routine clinical practice. The aim of this study is to develop a deep-learning AI system to improve the diagnostic accuracy of HCC by analysing liver CT imaging data. METHODS: We developed a deep-learning AI system by training on CT images from 7512 patients at Henan Provincial Peoples' Hospital. Its performance was validated on one internal test set (Henan Provincial Peoples' Hospital, n = 385) and one external test set (Henan Provincial Cancer Hospital, n = 556). The area under the receiver-operating characteristic curve (AUROC) was used as the primary classification metric. Accuracy, sensitivity, specificity, precision, negative predictive value and F1 metric were used to measure the performance of AI systems and radiologists. RESULTS: AI system achieved high performance in identifying HCC patients, with AUROC of 0.887 (95% CI 0.855-0.919) on the internal test set and 0.883 (95% CI 0.855-0.911) on the external test set. For internal test set, accuracy was 81.0% (76.8-84.8%), sensitivity was 78.4% (72.4-83.7%), specificity was 84.4% (78.0-89.6%) and F1 (harmonic average of precision and recall rate) was 0.824. For external test set, accuracy was 81.3% (77.8-84.5%), sensitivity was 89.4% (85.0-92.8%), specificity was 74.0% (68.5-78.9%) and F1 was 0.819. Compared with radiologists, AI system achieved comparable accuracy and F1 metric on internal test set (0.853 versus 0.818, P = 0.107; 0.863 vs. 0.824, P = 0.082) and external test set (0.805 vs. 0.793, P = 0.663; 0.810 vs. 0.814, P = 0.866). The predicted HCC risk scores by AI system in HCC patients with multiple tumours and high fibrosis stage were higher than those with solitary tumour and low fibrosis stage (tumour number: 0.197 vs. 0.138, P = 0.006; fibrosis stage: 0.183 vs. 0.127, P < 0.001). Radiologists' review showed that the accuracy of saliency heatmaps predicted by algorithms was 92.1% (95% CI: 89.2-95.0%). CONCLUSIONS: AI system achieved high performance in the detection of HCC compared with a group of specialised radiologists. Further investigation by prospective clinical trials was necessitated to verify this model.


Subject(s)
Carcinoma, Hepatocellular/diagnostic imaging , Liver Neoplasms/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Adolescent , Adult , Aged , Aged, 80 and over , Area Under Curve , Artificial Intelligence , Child , Child, Preschool , Deep Learning , Female , Humans , Male , Middle Aged , Prospective Studies , Young Adult
3.
Front Hum Neurosci ; 15: 654381, 2021.
Article in English | MEDLINE | ID: mdl-34163341

ABSTRACT

The presence of iron is an important factor for normal brain functions, whereas excessive deposition of iron may impair normal cognitive function in the brain and lead to Alzheimer's disease (AD). MRI has been widely applied to characterize brain structural and functional changes caused by AD. However, the effectiveness of using susceptibility-weighted imaging (SWI) for the analysis of brain iron deposition is still unclear, especially within the context of early AD diagnosis. Thus, in this study, we aim to explore the relationship between brain iron deposition measured by SWI with the progression of AD using various feature selection and classification methods. The proposed model was evaluated on a 69-subject SWI imaging dataset consisting of 24 AD patients, 21 mild cognitive impairment patients, and 24 normal controls. The identified AD progression-related regions were then compared with the regions reported from previous genetic association studies, and we observed considerable overlap between these two. Further, we have identified a new potential AD-related gene (MEF2C) closely related to the interaction between iron deposition and AD progression in the brain.

SELECTION OF CITATIONS
SEARCH DETAIL