Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36675277

ABSTRACT

The pathogenesis of non-alcoholic fatty liver disease (NAFLD), the most prevalent chronic liver disease, is associated with zinc deficiency. Previous studies show zinc supplementation improves steatosis and glucose metabolism, but its therapeutic effects in patients with established NAFLD remain unclear. We developed an in vivo model to characterize the effects of zinc supplementation on high-fat diet (HFD) induced NAFLD and hypothesized that the established NAFLD would be attenuated by zinc supplementation. Male C57BL/6J mice were fed a control diet or HFD for 12 weeks. Mice were then further grouped into normal and zinc-supplemented diets for 8 additional weeks. Body composition and glucose tolerance were determined before and after zinc supplementation. At euthanasia, plasma and liver tissue were collected for characterization and downstream analysis. As expected, 12 weeks of HFD resulted in reduced glucose clearance and altered body composition. Eight weeks of subsequent zinc supplementation did not alter glucose handling, plasma transaminases, steatosis, or hepatic gene expression. Results from our model suggest 8-week zinc supplementation cannot reverse established NAFLD. The HFD may have caused NAFLD disease progression beyond rescue by an 8-week period of zinc supplementation. Future studies will address these limitations and provide insights into zinc as a therapeutic agent for established NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Male , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Diet, High-Fat/adverse effects , Zinc/metabolism , Mice, Inbred C57BL , Liver/metabolism , Dietary Supplements , Glucose/metabolism , Disease Models, Animal
2.
Life Sci ; 315: 121385, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36634865

ABSTRACT

Cadmium is a hazardous metal with multiple organ toxicity that causes great harm to human health. Cadmium enters the human body through occupational exposure, diet, drinking water, breathing, and smoking. Cadmium accumulation in the human body is associated with increased risk of developing obesity, cardiovascular disease, diabetes, and metabolic syndrome (MetS). Cadmium uptake is enhanced during pregnancy and can cross the placenta affecting placental development and function. Subsequently, cadmium can pass to fetus, gathering in multiple organs such as the liver and pancreas. Early-life cadmium exposure can induce hepatic oxidative stress and pancreatic ß-cell dysfunction, resulting in insulin resistance and glucose metabolic dyshomeostasis in the offspring. Prenatal exposure to cadmium is also associated with increasing epigenetic effects on the offspring's multi-organ functions. However, whether and how maternal exposure to low-dose cadmium impacts the risks of developing type 2 diabetes (T2D) in the young and/or adult offspring remains unclear. This review collected available data to address the current evidence for the potential role of cadmium exposure, leading to insulin resistance and the development of T2D in offspring. However, this review reveals that underlying mechanisms linking prenatal cadmium exposure during pregnancy with T2D in offspring remain to be adequately investigated.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Metabolic Syndrome , Prenatal Exposure Delayed Effects , Adult , Pregnancy , Female , Humans , Metabolic Syndrome/chemically induced , Metabolic Syndrome/complications , Maternal Exposure , Cadmium/toxicity , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/complications , Placenta/metabolism , Prenatal Exposure Delayed Effects/metabolism
3.
Alcohol Clin Exp Res (Hoboken) ; 47(1): 60-75, 2023 01.
Article in English | MEDLINE | ID: mdl-36377258

ABSTRACT

BACKGROUND: The prevalence of alcohol-associated liver disease (ALD), a subtype of fatty liver disease (FLD), continues to rise. ALD is a major cause of preventable death. Polychlorinated biphenyl (PCB) 126 is an environmentally relevant, dioxin-like pollutant whose negative metabolic effects have been well documented. In human and animal studies, PCB has been associated with the severity of nonalcoholic fatty liver disease (NAFLD). However, few studies have investigated whether exposures to environmental toxicants can worsen ALD. Thus, the objective of the current study was to develop an alcohol-plus-toxicant model to study how an environmental pollutant, PCB 126, impacts rodent ALD pathology. METHODS: Briefly, male C57BL/6J mice were exposed to 0.2 mg/kg PCB 126 or corn oil vehicle four days prior to ethanol feeding using the chronic-binge (10-plus-one) model. RESULTS: Concentrations of macromolecules, including hepatic lipids, carbohydrates, and protein (albumin) were impacted. Exposure to PCB 126 exacerbated hepatic steatosis and hepatomegaly in mice exposed to the chemical and fed an ethanol diet. Gene expression and the analysis of blood chemistry showed a potential net increase and retention of hepatic lipids and reductions in lipid oxidation and clearance capabilities. Depletion of glycogen and glucose was evident, which contributes to disease progression by generating systemic malnutrition. Granulocytic immune infiltrates were present but driven solely by ethanol feeding. Hepatic albumin gene expression and plasma levels were decreased by ~50% indicating a potential compromise of liver function. Finally, gene expression analyses indicated that the aryl hydrocarbon receptor and constitutive androstane receptor were activated by PCB 126 and ethanol, respectively. CONCLUSIONS: Various environmental toxicants are known to modify or enhance FLD in high-fat diet models. Findings from the present study suggest that they interact with other lifestyle factors such as alcohol consumption to reprogram intermediary metabolism resulting in exacerbated ethanol-associated systemic malnutrition in ALD.


Subject(s)
Environmental Pollutants , Liver Diseases, Alcoholic , Malnutrition , Non-alcoholic Fatty Liver Disease , Polychlorinated Biphenyls , Humans , Male , Mice , Animals , Polychlorinated Biphenyls/metabolism , Polychlorinated Biphenyls/pharmacology , Environmental Pollutants/metabolism , Environmental Pollutants/pharmacology , Rodentia , Mice, Inbred C57BL , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Liver Diseases, Alcoholic/metabolism , Diet, High-Fat , Ethanol/pharmacology , Lipids/pharmacology , Malnutrition/metabolism , Malnutrition/pathology
6.
Ecotoxicol Environ Saf ; 234: 113373, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35272187

ABSTRACT

As an environmental pollutant, cadmium (Cd) has been widely reported to induce male infertility due to its gonadotoxicity. However, the specific mechanism of Cd-induced testicular damage remains unclear. We investigated whether Cd causes testicular injury through ferroptosis. Male C57BL/6 J mice were exposed to 0, 0.5, or 5 ppm Cd via drinking water, starting in utero, and continuing through 24 weeks post-weaning. The results showed that Cd accumulated in the testes in a dose-dependent manner. Cd exposure at a concentration of 5 ppm, but not 0.5 ppm, caused a mass loss and detachment of germ cells, as well as a decreased meiotic index and testis weight. Exposure to 5 ppm Cd caused iron accumulation, increased levels of malondialdehyde (MDA) and nitro tyrosine (3-NT), and decreased expression of Nrf2, HO-1 and SOD2. We also found that exposure to 5 ppm Cd significantly decreased the expression of SLC7A11, a marker of ferroptosis in mice, along with the expression of SLC40A1 mRNA and ferritin heavy chain (FTH) protein, whereas there was no obvious change in the mRNA expression of Tfrc, ZIP8, ZIP14, and NCOA4. These findings indicate that 5 ppm Cd exposure increased testicular ferroptosis, which may be attributed to the reduction of stored iron export.

7.
Chem Biol Interact ; 353: 109797, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34998821

ABSTRACT

Although several studies have reported testicular impairments caused by cadmium (Cd) or obesity alone, the combined effect of Cd and obesity on the testes and its underlying mechanism remains unclear. We examined the combined effect of whole-life exposure to low-dose Cd started at preconception and post-weaning high-fat diet (HFD) on the testes of offspring mice. At weaning, male offspring parented with and without exposure to low-dose Cd were continued on the same drinking water regimen as their parents and fed with either a normal diet (ND) or HFD for 10 or 24 weeks. Whole-life exposure to Cd resulted in its accumulation in testes, and HFD induced obesity and lipid metabolism disorder. Exposure to Cd or HFD alone significantly decreased Johnsen scores, disrupted testicular structure, and increased germ cell apoptosis at both 10 and 24 weeks. However, co-exposure to Cd and HFD did not induce the toxic effects that were induced by either alone, as revealed by preserved testicular structure and spermatogenesis, lack of significant apoptosis, and increased cell proliferation. Mechanistically, the combined effects of low-dose Cd and HFD consumption were associated with the activation of the JAK/STAT pathway. These findings suggest that co-exposure to low-dose Cd and HFD did not cause Cd- or HFD-induced testicular injury, probably because of the activation of the JAK/STAT pathway to prevent germ cell apoptosis.


Subject(s)
Cadmium/toxicity , Diet, High-Fat , Spermatogenesis/drug effects , Testis/physiology , Animals , Animals, Newborn , Apoptosis/drug effects , Cadmium/analysis , Female , Germ Cells/cytology , Germ Cells/metabolism , Janus Kinases/metabolism , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL , Models, Animal , Oxidative Stress/drug effects , STAT Transcription Factors/metabolism , Signal Transduction/drug effects , Testis/anatomy & histology , Testis/chemistry
8.
Toxicol Appl Pharmacol ; 436: 115855, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34990729

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a major global public health concern affecting more than 25% of the world's population. Although obesity and diabetes are major risk factors for NAFLD, they cannot account for all cases, indicating the importance of other factors such as environmental exposures. Cadmium (Cd) exposure is implicated in the development of NAFLD; however, the influence of early life, in utero Cd exposure on the development of diet-induced NAFLD is poorly understood. Therefore, we developed an in vivo, multiple-hit model to study the effect of whole-life, low dose Cd exposure on high fat diet (HFD)-induced NAFLD. Adult male and female C57BL/6 J mice fed normal diets (ND) were exposed to 0, 0.5 or 5 ppm Cd-containing drinking water for 14 weeks before breeding. At weaning, offspring were fed ND or HFD and continued on the same drinking water regimen as their parents for 24 weeks. Cd exposure at different concentrations differentially altered HFD-associated adverse health effects, including liver injury. HFD-induced increased body weight, decreased glucose tolerance. Liver injury and lipid deposition were exacerbated by 5 ppm Cd exposure but attenuated by 0.5 ppm Cd exposure. Further, HFD blunted the response of metallothionein, a major Cd detoxification protein, in mice exposed to 5 ppm Cd but enhanced the response in mice exposed to 0.5 ppm Cd, suggesting a possible mechanism for Cd alteration of HFD-induced NAFLD. These results confirm the multi-hit nature of NAFLD and show whole life, low dose Cd exposure alters HFD-induced NAFLD with outcomes dependent on Cd concentration.


Subject(s)
Cadmium/adverse effects , Liver/drug effects , Non-alcoholic Fatty Liver Disease/chemically induced , Animals , Diet, High-Fat/methods , Disease Models, Animal , Female , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Signal Transduction/drug effects
9.
Environ Int ; 158: 106877, 2022 01.
Article in English | MEDLINE | ID: mdl-34547640

ABSTRACT

Hexavalent chromium [Cr(VI)] is a global environmental pollutant that increases risk for several types of cancers and is increasingly being recognized as a neurotoxicant. Traditionally, the brain has been viewed as a largely post-mitotic organ due to its specialized composition of neurons, and consequently, clastogenic effects were not considered in neurotoxicology. Today, we understand the brain is composed of at least eight distinct cell types - most of which continue mitotic activity throughout lifespan. We have learned these dividing cells play essential roles in brain and body health. This review focuses on Cr(VI), a potent clastogen and known human carcinogen, as a potentially neurotoxic agent targeting mitotic cells of the brain. Despite its well-established role as a human carcinogen, Cr(VI) neurotoxicity studies have failed to find a significant link to brain cancers. In the few studies that did find a link, Cr(VI) was identified as a risk for gliomas. Instead, in the human brain, Cr(VI) appears to have more subtle deleterious effects that can impair childhood learning and attention development, olfactory function, social memory, and may contribute to motor neuron diseases. Studies of Cr(VI) neurotoxicity with animal and cell culture models have demonstrated elevated markers of oxidative damage and redox stress, with widespread neurodegeneration. One study showed mice exposed to Cr(VI)-laden tannery effluent exhibited longer periods of aggressive behavior toward an "intruder" mouse and took longer to recognize mice previously encountered, recapitulating the social memory deficits observed in humans. Here we conducted a critical review of the available literature on Cr(VI) neurotoxicity and synthesize the collective observations to thoroughly evaluate Cr(VI) neurotoxicity - much remains to be understood and recognized.


Subject(s)
Chromium , Environmental Pollutants , Animals , Chromium/toxicity , DNA Damage , Environmental Pollutants/toxicity , Mice , Oxidative Stress
10.
Sci Total Environ ; 818: 151848, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-34822883

ABSTRACT

An increasing body of evidence implicates high levels of selenium intake in the development of diabetes, although prospective studies remain sparse. We conducted a nested case-control study of 622 diabetes incident cases and 622-age, sex, and follow-up time-matched controls in the prospective Jinchang cohort of 48,001 participants with a median of 5.8 years of follow-up. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure all 622 case-control pairs' baseline serum levels of selenium (Se), which were then categorized into quartiles based on the frequency distribution among the controls. Multivariable adjusted conditional logistic regression and restricted cubic splines (RCS) models were applied to evaluate independent odds ratios (OR) as estimates for relative risks (RR) of diabetes according to quartiles (Q) of selenium levels. Compared to the lowest quartile (Q1 as reference), significantly greater diabetes risks (with 95% confidence interval) were observed in Q3 (OR = 1.62, 1.17-2.35) and Q4 (OR = 1.79, 1.21-2.64). Sub-analyses showed these increased risks of diabetes by serum levels of Se. appeared to differ by sex, age, BMI status, history of hypertension, and dyslipidemia. Further, application of RSC models showed that serum Se levels between 95 and 120 µg/L were significantly and positively associated with diabetes risk whereas no apparent relation exists when Se levels were under 95 µg/L in this cohort population.


Subject(s)
Diabetes Mellitus , Selenium , Case-Control Studies , Child, Preschool , Diabetes Mellitus/epidemiology , Humans , Odds Ratio , Prospective Studies , Risk Factors
11.
Sci Total Environ ; 809: 152176, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-34875320

ABSTRACT

We previously showed the development of cardiac remodeling (hypertrophy or fibrosis) in mice with either post-weaning high-fat diet (HFD, 60% kcal fat) feeding or exposure to chronic low-dose cadmium. Here, we determined whether whole-life exposure to environmentally relevant, low-dose cadmium affects the susceptibility of offspring to post-weaning HFD-induced cardiac pathologies and function. Besides, we also determined whether these effects are sex-dependent. Male and female mice were exposed to cadmium-containing (0, 0.5, or 5 parts per million [ppm]) drinking water before breeding; the pregnant mice and dams with offspring continually drank the same cadmium-containing water. After weaning, the offspring were continued on the same regime as their parents and fed either a HFD or normal fat diet for 24 weeks. Cardiac function was examined with echocardiography. Cardiac tissues were used for the histopathological and biochemical (gene and protein expression by real-time PCR and Western blotting) assays. Results showed a dose-dependent cadmium accumulation in the hearts of male and female mice along with decreased cardiac zinc and copper levels only in female offspring. Exposure to 5 ppm, but not 0.5 ppm, cadmium significantly enhanced HFD cardiac effects only in female mice, shown by worsened cardiac systolic and diastolic dysfunction (ejection fraction, mitral E-to-annular e' ratio), increased fibrosis (collagen, fibronectin, collagen1A1), hypertrophy (cardiomyocyte size, atrial natriuretic peptide, ß-myosin heavy chain), and inflammation (intercellular adhesion molecule-1, tumor necrosis factor-α, plasminogen activator inhibitor type 1), compared to the HFD group. These synergistic effects were associated with activation of the p38 mitogen-activated protein kinases (MAPK) signaling pathway and increased oxidative stress, shown by 3-nitrotyrosine and malondialdehyde, along with decreased metallothionein expression. These results suggest that whole-life 5 ppm cadmium exposure significantly increases the susceptibility of female offspring to HFD-induced cardiac remodeling and dysfunction. The underlying mechanism and potential intervention will be further explored in the future.


Subject(s)
Cadmium , Diet, High-Fat , Animals , Cadmium/metabolism , Cadmium/toxicity , Diet, High-Fat/adverse effects , Female , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac , Oxidative Stress , Pregnancy , Sex Characteristics
12.
Oxid Med Cell Longev ; 2021: 1427787, 2021.
Article in English | MEDLINE | ID: mdl-34876963

ABSTRACT

Maternal exposure to cadmium causes obesity and metabolic changes in the offspring, including nonalcoholic fatty liver disease-like pathology. However, whether maternal cadmium exposure accelerates liver cancer in the offspring is unknown. This study investigated the impact of early-life exposure to cadmium on the incidence and potential mechanisms of hepatocellular carcinoma (HCC) in offspring subjected to postweaning HCC induction. HCC in C57BL/6J mice was induced by diethylnitrosamine (DEN) injection at weaning, followed by a long-term high-fat choline-deficient (HFCD) diet. Before weaning, liver cadmium levels were significantly higher in mice with early-life cadmium exposure than in those without cadmium exposure. However, by 26 and 29 weeks of age, hepatic cadmium fell to control levels, while a significant decrease was observed in copper and iron in the liver. Both male and female cadmium-exposed mice showed increased body weight compared to non-cadmium-treated mice. For females, early-life cadmium exposure also worsened insulin intolerance but did not significantly promote DEN/HFCD diet-induced liver tumors. In contrast, in male mice, early-life cadmium exposure enhanced liver cancer induction by DEN/HFCD with high incidence and larger liver tumors. The liver peritumor tissue of early-life cadmium-exposed mice exhibited greater inflammation and disruption of fatty acid metabolism, accompanied by higher malondialdehyde and lower esterified triglyceride levels compared to mice without cadmium exposure. These findings suggest that early-life exposure to low-dose cadmium accelerates liver cancer development induced by a DEN/HFCD in male mice, probably due to chronic lipotoxicity and inflammation caused by increased uptake but decreased consumption of fatty acids.


Subject(s)
Cadmium/toxicity , Diet, High-Fat , Diethylnitrosamine/pharmacology , Liver Neoplasms/pathology , Animals , Animals, Newborn , Choline/metabolism , Diet, High-Fat/veterinary , Disease Models, Animal , Fatty Acids/metabolism , Female , Liver/pathology , Liver Neoplasms/chemically induced , Male , Malondialdehyde/metabolism , Mice , Mice, Inbred C57BL , Triglycerides/metabolism
13.
Toxicol Rep ; 8: 718-723, 2021.
Article in English | MEDLINE | ID: mdl-33889501

ABSTRACT

The effects of exposure to the environmental toxicant cadmium, in combination with obesity, on the metal content in mouse testis were evaluated. Starting in utero and continuing through to 10 or 24 weeks post-weaning, male mice were exposed to cadmium (0, 0.5 or 5 ppm), and fed either a low (LFD) or high fat diet (HFD) post-weaning. Testicular levels of cadmium and essential metals were determined 10 and 24 weeks post-weaning by ICP-MS. Similar to what has been previously observed in the liver, kidney, heart and brain, significant levels of cadmium accumulated in the testis under all exposure conditions. Additionally, HFD-fed animals accumulated more cadmium than did their LFD-treated counterparts. Both treatments affected essential metal homeostasis in the testis. These findings suggest that cadmium and obesity may compromise the reproductive potential in the male mouse by disrupting essential metal levels.

14.
Toxicol Appl Pharmacol ; 403: 115161, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32721433

ABSTRACT

Cadmium is a ubiquitous, non-essential metal that has earned a spot on the World Health Organizations top 10 chemicals of major public health concern. The mechanisms of cadmium-induced adverse health outcomes, such as cardiovascular disease, renal toxicity and cancer, are well studied in adults. However, the implications for early life exposures to low-level cadmium leading to increased risk of developing diseases in adulthood remains elusive. Epidemiological investigation of the long term implications of cadmium-associated adverse birth outcomes are limited and studies do not extend into adulthood. This review will summarize the literature on the non-lethal, adverse health effects associated with prenatal and early life exposure to cadmium and the implications of these exposures in the development of diseases later in life. In addition, this review will highlight possible mechanisms responsible for these outcomes as well as address the inconsistencies in the literature. More recent studies have addressed sex as a biological variable, showing prenatal cadmium exposure elicits sex-specific outcomes that would otherwise be masked by pooling male and female data. Furthermore, researchers have begun to investigate the role of prenatal and early life cadmium exposures in the development of diet-induced diseases with evidence of altered essential metal homeostasis as a likely mechanism for cadmium-enhanced, diet-induced diseases. Although novel experimental models are beginning to be established to study the association between prenatal cadmium exposure and adverse health outcomes in adulthood, the studies are few, highlighting a major need for further investigation.


Subject(s)
Cadmium/toxicity , Environmental Pollutants/toxicity , Prenatal Exposure Delayed Effects , Epigenesis, Genetic , Female , Gene Expression Regulation, Developmental/drug effects , Humans , Pregnancy
15.
Mol Med Rep ; 22(2): 603-611, 2020 08.
Article in English | MEDLINE | ID: mdl-32468027

ABSTRACT

Diabetes mellitus (DM) is a growing health concern in society. Type 1 and type 2 DM are the two main types of diabetes; both types are chronic diseases that affect glucose metabolism in the body and the impaired regulation of glucose and lipid metabolism promotes the development and progression of DM. During the physiological metabolism process, the liver serves a unique role in glucose and lipid metabolism. The present article aimed to review the association between DM and glucose metabolism in the liver and discuss the changes of the following hepatic glucose fluxes: Gluconeogenesis, glucose/glucose 6­phosphate cycling, glycogenolysis, glycogenesis and the pentose phosphate pathway. Moreover, the incidence of fatty liver in DM was also investigated.


Subject(s)
Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 2/complications , Glucose/metabolism , Lipid Metabolism , Liver/metabolism , Animals , Humans , Insulin/metabolism , Insulin Resistance
17.
Sci Rep ; 10(1): 2609, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-32042093

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
Sci Rep ; 9(1): 14675, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31604971

ABSTRACT

Exposure to the environmental toxicant cadmium (Cd) contributes to the development of obesity-associated diseases. Obesity is a risk factor for a spectrum of unhealthy conditions including systemic metabolic dyshomeostasis. In the present study, the effects of whole-life exposure to environmentally-relevant concentrations of Cd on systemic essential metal distribution in adult mice fed a high-fat diet (HFD) were examined. For these studies, male and female mice were exposed to Cd-containing drinking water for >2 weeks before breeding. Pregnant mice and dams with offspring were exposed to Cd-containing drinking water. After weaning, offspring were continuously exposed to the same Cd concentration as their parents, and divided into HFD and normal (low) fat diet (LFD) groups. At 10 and 24 weeks, mice were sacrificed and blood, liver, kidney and heart harvested for metal analyses. There were significant concentration dependent increases in Cd levels in offspring with kidney > liver > heart. Sex significantly affected Cd levels in kidney and liver, with female animals accumulating more metal than males. Mice fed the HFD showed > 2-fold increase in Cd levels in the three organs compared to similarly treated LFD mice. Cadmium significantly affected essential metals levels in blood, kidney and liver. Additionally, HFD affected essential metal levels in these three organs. These findings suggest that Cd interacts with HFD to affect essential metal homeostasis, a phenomenon that may contribute to the underlying mechanism responsible for the development of obesity-associated pathologies.


Subject(s)
Kidney/chemistry , Liver/chemistry , Metals/chemistry , Myocardium/chemistry , Obesity/metabolism , Animals , Cadmium/pharmacology , Cadmium/toxicity , Diet, Fat-Restricted , Diet, High-Fat/adverse effects , Female , Heart/drug effects , Kidney/drug effects , Liver/drug effects , Male , Metals/isolation & purification , Metals/metabolism , Mice , Myocardium/metabolism , Obesity/complications , Obesity/pathology , Pregnancy , Risk Factors
19.
Chem Biol Interact ; 310: 108719, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31238026

ABSTRACT

Both obesity and arsenic exposure are global public health problems that are associated with increased risk of renal disease. The effect of whole-life exposure to environmentally relevant levels of arsenic within dietary high fat diet on renal pathogenesis were examined. In this study, C57BL/6 J mice were parentally exposed to 100 ppb arsenic before conception. After weaning, both male and female offspring were maintained on 100 ppb arsenic and fed either a normal (LFD) or high fat diet (HFD). At 10 and 24 weeks of age, the offspring were sacrificed and kidneys collected. Exposure to arsenic led to an increase body-weight in LFD diet-fed female but not male mice. This response was not observed in HFD-fed female mice; however male mice showed significant increases in body weight in both As- and non-treated animals. Histological analysis shows that arsenic exposure significantly increases HFD-induced glomerular area expansion, mesangial matrix accumulation and fibrosis compared to LFD control animals. HFD alone increases renal inflammation and fibrosis; reflected by increases in IL-1ß, ICAM-1 and fibronectin levels. Arsenic exposure significantly increases HFD-induced inflammatory and oxidative stress responses. In general, male mice have more severe responses than female mice to HFD or arsenic treatment. These results demonstrate that arsenic exposure causes sex-dependent alterations in HFD-induced kidney damage.


Subject(s)
Arsenic/adverse effects , Diet, High-Fat/adverse effects , Kidney Diseases/etiology , Kidney/drug effects , Animals , Arsenic/toxicity , Body Weight/drug effects , Inflammation/etiology , Kidney/injuries , Kidney Diseases/chemically induced , Kidney Diseases/pathology , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Sex Factors
20.
Chem Res Toxicol ; 32(6): 1070-1081, 2019 06 17.
Article in English | MEDLINE | ID: mdl-30912652

ABSTRACT

Childhood obesity, which is prevalent in developed countries, is a metabolic risk factor for cardiovascular disease. Cadmium (Cd), a ubiquitous environmental toxic metal, also has deleterious effects on the cardiovascular system. However, the combined effects of a high-fat diet (HFD) and lifelong, low-dose Cd exposure on cardiac remodeling remain unclear. This study aims to determine the effects of combined HFD and Cd exposure on cardiac remodeling, as well as gender-specific differences in the response. C57BL/6J mice were exposed to Cd at a low dose (L-Cd, 0.5 ppm) or high dose (H-Cd, 5 ppm) via drinking water from conception to sacrifice. After being weaned, the offspring mice were fed with a HFD (42% kcal from fat) for an additional 10 weeks. H-Cd exposure significantly increased Cd accumulation in the hearts of both parents and their offspring; a HFD showed no added effects on cardiac Cd content. H-Cd exposure increased cardiac metallothionein protein levels only in female mice, regardless of dietary intake. Histological analysis revealed that H-Cd exposure combined with a HFD induced cardiac hypertrophy and fibrosis only in female mice. This was further supported by elevated expression of ANP and COL1A1 protein levels along with COL1A1, COL1A2, and COL3A1 mRNA levels. Profibrotic markers PAI-1, CTGF, and FN were also elevated in HFD/H-Cd-exposed female mice. Levels of the oxidative stress marker 3-NT significantly increased in the hearts of HFD-fed female mice, whereas Cd exposure showed no additional effects. Of all the antioxidant markers examined, levels of CAT significantly increased in mice fed a HFD, regardless of gender and Cd exposure. In summary, a HFD combined with lifelong, low-dose Cd exposure induces cardiac hypertrophy and fibrosis in female but not male mice, a response that is independent of oxidative stress.


Subject(s)
Cadmium/administration & dosage , Cadmium/toxicity , Cardiomegaly/chemically induced , Diet, High-Fat/adverse effects , Fibrosis/chemically induced , Animals , Cardiomegaly/pathology , Dose-Response Relationship, Drug , Female , Fibrosis/pathology , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Sex Factors , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...