Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 19(3): e1011241, 2023 03.
Article in English | MEDLINE | ID: mdl-36930690

ABSTRACT

Dengue virus (DENV) infection can induce life-threatening dengue hemorrhagic fever/dengue shock syndrome in infected patients. DENV is a threat to global health due to its growing numbers and incidence of infection in the last 50 years. During infection, DENV expresses ten structural and nonstructural proteins modulating cell responses to benefit viral replication. However, the lack of knowledge regarding the cellular proteins and their functions in enhancing DENV pathogenesis impedes the development of antiviral drugs and therapies against fatal DENV infection. Here, we identified that integrin-linked kinase (ILK) is a novel enhancing factor for DENV infection by suppressing type I interferon (IFN) responses. Mechanistically, ILK binds DENV NS1 and NS3, activates Akt and Erk, and induces NF-κB-driven suppressor of cytokine signaling 3 (SOCS3) expression. Elevated SOCS3 in DENV-infected cells inhibits phosphorylation of STAT1/2 and expression of interferon-stimulated genes (ISGs). Inhibiting ILK, Akt, or Erk activation abrogates SOCS3 expression. In DENV-infected mice, the treatment of an ILK inhibitor significantly reduces viral loads in the brains, disease severity, and mortality rate. Collectively, our results show that ILK is a potential therapeutic target against DENV infection.


Subject(s)
Dengue Virus , Dengue , Interferon Type I , Animals , Mice , Dengue Virus/physiology , Proto-Oncogene Proteins c-akt , Virus Replication , Interferon Type I/therapeutic use
3.
Mol Ther Oncolytics ; 28: 104-117, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36699618

ABSTRACT

Glioblastoma (GBM) is the most common aggressive malignant brain cancer and is chemo- and radioresistant, with poor therapeutic outcomes. The "double-edged sword" of virus-induced cell death could be a potential solution if the oncolytic virus specifically kills cancer cells but spares normal ones. Zika virus (ZIKV) has been defined as a prospective oncolytic virus by selectively targeting GBM cells, but unclear understanding of how ZIKV kills GBM and the consequences hinders its application. Here, we found that the cellular gasdermin D (GSDMD) is required for the efficient death of a human GBM cell line caused by ZIKV infection. The ZIKV protease specifically cleaves human GSDMD to activate caspase-independent pyroptosis, harming both viral protease-harboring and naive neighboring cells. Analyzing human GSDMD variants showed that most people were susceptible to ZIKV-induced cytotoxicity, except for those with variants that resisted ZIKV cleavage or were defective in oligomerizing the N terminus GSDMD cleavage product. Consistently, ZIKV-induced secretion of the pro-inflammatory cytokine interleukin-1ß and cytolytic activity were both stopped by a small-molecule inhibitor targeting GSDMD oligomerization. Thus, potential ZIKV oncolytic therapy for GBM would depend on the patient's GSDMD genetic background and could be abolished by GSDMD inhibitors if required.

4.
JCI Insight ; 7(21)2022 11 08.
Article in English | MEDLINE | ID: mdl-36125898

ABSTRACT

Diabetes mellitus (DM) is highly comorbid with severe dengue diseases; however, the underlying mechanisms are unclear. Patients with DM have a 1.61-fold increased risk of developing dengue hemorrhagic fever. In search of host factors involved in dengue virus (DENV) infection, we used high-glucose (HG) treatment and showed that HG increased viral protein expression and virion release but had no effects on the early stages of viral infection. After HG stimulation, DENV-firefly luciferase-transfected assay and cellular replicon-based assay indicated increased viral translation, whereas using the glucose uptake inhibitor phloretin blocked this effect. HG treatment increased the translational factor poly(A)-binding protein (PABP) in a glucose transporter-associated, PI3K/AKT-regulated manner. Silencing PABP significantly decreased HG-prompted virion production. HG enhanced the formation of the PABP-eukaryotic translation initiation factor 4G complex, which is regulated by protein-disulfide isomerase. Hyperglycemia increased PABP expression, mortality rate, viral protein expression, and viral loads in streptozotocin-induced DM mice. Overall, hyperglycemic stress facilitates DENV infection by strengthening PABP-mediated viral translation.


Subject(s)
Dengue , Hyperglycemia , Animals , Mice , Protein Biosynthesis , Phosphatidylinositol 3-Kinases/metabolism , RNA, Messenger/metabolism , Poly(A)-Binding Proteins/genetics , Poly(A)-Binding Proteins/metabolism , Viral Proteins/metabolism , Hyperglycemia/complications
5.
iScience ; 25(8): 104709, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35813875

ABSTRACT

Post-translational modifications (PTMs), such as glycosylation and palmitoylation, are critical to protein folding, stability, intracellular trafficking, and function. Understanding regulation of PTMs of SARS-CoV-2 spike (S) protein could help the therapeutic drug design. Herein, the VSV vector was used to produce SARS-CoV-2 S pseudoviruses to examine the roles of the 611LYQD614 and cysteine-rich motifs in S protein maturation and virus infectivity. Our results show that 611LY612 mutation alters S protein intracellular trafficking and reduces cell surface expression level. It also changes S protein glycosylation pattern and decreases pseudovirus infectivity. The S protein contains four cysteine-rich clusters with clusters I and II as the main palmitoylation sites. Mutations of clusters I and II disrupt S protein trafficking from ER-to-Golgi, suppress pseudovirus production, and reduce spike-mediated membrane fusion activity. Taken together, glycosylation and palmitoylation orchestrate the S protein maturation processing and are critical for S protein-mediated membrane fusion and infection.

6.
J Biomed Sci ; 29(1): 37, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35681239

ABSTRACT

BACKGROUND: Calls for the coronavirus to be treated as an endemic illness, such as the flu, are increasing. After achieving high coverage of COVID-19 vaccination, therapeutic drugs have become important for future SARS-CoV-2 variant outbreaks. Although many monoclonal antibodies have been approved for emergency use as treatments for SARS-CoV-2 infection, some monoclonal antibodies are not authorized for variant treatment. Broad-spectrum monoclonal antibodies are unmet medical needs. METHODS: We used a DNA prime-protein boost approach to generate high-quality monoclonal antibodies. A standard ELISA was employed for the primary screen, and spike protein-human angiotensin-converting enzyme 2 blocking assays were used for the secondary screen. The top 5 blocking clones were selected for further characterization, including binding ability, neutralization potency, and epitope mapping. The therapeutic effects of the best monoclonal antibody against SARS-CoV-2 infection were evaluated in a hamster infection model. RESULTS: Several monoclonal antibodies were selected that neutralize different SARS-CoV-2 variants of concern (VOCs). These VOCs include Alpha, Beta, Gamma, Delta, Kappa and Lambda variants. The high neutralizing antibody titers against the Beta variant would be important to treat Beta-like variants. Among these monoclonal antibodies, mAb-S5 displays the best potency in terms of binding affinity and neutralizing capacity. Importantly, mAb-S5 protects animals from SARS-CoV-2 challenge, including the Wuhan strain, D614G, Alpha and Delta variants, although mAb-S5 exhibits decreased neutralization potency against the Delta variant. Furthermore, the identified neutralizing epitopes of monoclonal antibodies are all located in the receptor-binding domain (RBD) of the spike protein but in different regions. CONCLUSIONS: Our approach generates high-potency monoclonal antibodies against a broad spectrum of VOCs. Multiple monoclonal antibody combinations may be the best strategy to treat future SARS-CoV-2 variant outbreaks.


Subject(s)
Antibodies, Monoclonal , COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19 Vaccines , Cricetinae , Humans , Spike Glycoprotein, Coronavirus/genetics
7.
NPJ Vaccines ; 7(1): 60, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35662254

ABSTRACT

A major challenge in the use of DNA vaccines is efficient DNA delivery in vivo. Establishing a safe and efficient electric transfer method is the key to developing rapid DNA vaccines against emerging infectious diseases. To overcome the complexity of designing new electric transfer machines for DNA delivery, a clinically approved electric transfer machine could be considered as an alternative. Here, we report an electroacupuncture machine-based method for DNA vaccine delivery after intramuscular injection of the COVID-19 DNA vaccine. The S gene of SARS-CoV-2 in the pVAX1 plasmid (pSARS2-S) was used as an antigen in this study. We optimized the clinically used electroacupuncture machine settings for efficient induction of the neutralizing antibody titer after intramuscular injection of pSARS2-S in mice. We found that pSARS2-S immunization at 40 Vpp for 3-5 s could induce high neutralizing antibody titers and Th1-biased immune responses. IFN-γ/TNF-α-secreting CD4+ and CD8+ T cells were also observed in the DNA vaccination group but not in the recombinant protein vaccination group. T-cell epitope mapping shows that the major reactive epitopes were located in the N-terminal domain (a.a. 261-285) and receptor-binding domain (a.a. 352-363). Importantly, pSARS2-S immunization in hamsters could induce protective immunity against SARS-CoV-2 challenge in vivo. In the preclinical toxicology study, blood biochemistry, hematology, and DNA persistence analysis reveal that the DNA delivery method is safe. Furthermore, the raised antisera could also cross-neutralize different variants of concern. These findings suggest that DNA vaccination using an electroacupuncture machine is feasible for use in humans in the future.

8.
Front Immunol ; 13: 872047, 2022.
Article in English | MEDLINE | ID: mdl-35585971

ABSTRACT

An effective COVID-19 vaccine against broad SARS-CoV-2 variants is still an unmet need. In the study, the vesicular stomatitis virus (VSV)-based vector was used to express the SARS-CoV-2 Spike protein to identify better vaccine designs. The replication-competent of the recombinant VSV-spike virus with C-terminal 19 amino acid truncation (SΔ19 Rep) was generated. A single dose of SΔ19 Rep intranasal vaccination is sufficient to induce protective immunity against SARS-CoV-2 infection in hamsters. All the clones isolated from the SΔ19 Rep virus contained R682G mutation located at the Furin cleavage site. An additional S813Y mutation close to the TMPRSS2 cleavage site was identified in some clones. The enzymatic processing of S protein was blocked by these mutations. The vaccination of the R682G-S813Y virus produced a high antibody response against S protein and a robust S protein-specific CD8+ T cell response. The vaccinated animals were protected from the lethal SARS-CoV-2 (delta variant) challenge. The S antigen with resistance to enzymatic processes by Furin and TMPRSS2 will provide better immunogenicity for vaccine design.


Subject(s)
COVID-19 , Furin , SARS-CoV-2 , Serine Endopeptidases , Animals , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines , Furin/genetics , Furin/metabolism , Humans , Immunity, Cellular , SARS-CoV-2/immunology , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Spike Glycoprotein, Coronavirus/immunology
9.
Sci Rep ; 12(1): 3297, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35228672

ABSTRACT

Preterm delivery of low-birth weight infants is considered a leading cause of morbidity and mortality among neonates. Various studies have reported a positive correlation between periodontal disease (PD) and premature birth (PB) and yet no population-based study has assessed the impact of PD severity and treatments on premature birth. This cohort study used Taiwan's national medical records (1999-2012, included 1,757,774 pregnant women) to investigate the association between PD severity and PB. Women with PD during the 2-year period prior for giving birth were more likely to have PB (11.38%) than those without PD (10.56%; p < 0.001). After variables adjustment, the advanced PD group had OR of 1.09 (95% CI 1.07-1.11) for PB, the mild PD group had OR of 1.05 (95% CI 1.04-1.06), while no-PD group had OR of 1. Increased PD severity was related to higher risk of PB. When stratified by age, the highest ORs for PB were those aged from 31 to 35 years in both mild PD group (OR = 1.09, 95% CI 1.07-1.11) and advanced PD group (OR = 1.13, 95% CI 1.09-1.17). Improving periodontal health before or during pregnancy may prevent or reduce the occurrence of adverse pregnancy outcomes and therefore maternal and perinatal morbidity and mortality.


Subject(s)
Periodontal Diseases , Pregnancy Complications , Premature Birth , Adult , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Periodontal Diseases/epidemiology , Pregnancy , Pregnancy Complications/epidemiology , Pregnancy Outcome/epidemiology , Premature Birth/epidemiology , Premature Birth/prevention & control , Taiwan/epidemiology
10.
JCI Insight ; 7(8)2022 04 22.
Article in English | MEDLINE | ID: mdl-35290246

ABSTRACT

Most therapeutic mAbs target the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. Unfortunately, the RBD is a hot spot for mutations in SARS-CoV-2 variants, which will lead to loss of the neutralizing function of current therapeutic mAbs. Universal mAbs for different variants are necessary. We identified mAbs that recognized the S2 region of the spike protein, which is identical in different variants. The mAbs could neutralize SARS-CoV-2 infection and protect animals from SARS-CoV-2 challenge. After cloning the variable region of the light chain and heavy chain, the variable region sequences were humanized to select a high-affinity humanized mAb, hMab5.17. hMab5.17 protected animals from SARS-CoV-2 challenge and neutralized SARS-CoV-2 variant infection. We further identified the linear epitope of the mAb, which is not mutated in any variant of concern. These data suggest that a mAb recognizing the S2 region of the spike protein will be a potential universal therapeutic mAb for COVID-19.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Monoclonal , Antibodies, Viral , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
11.
Cells ; 10(11)2021 11 15.
Article in English | MEDLINE | ID: mdl-34831405

ABSTRACT

Infection with flaviviruses causes mild to severe diseases, including viral hemorrhagic fever, vascular shock syndrome, and viral encephalitis. Several animal models explore the pathogenesis of viral encephalitis, as shown by neuron destruction due to neurotoxicity after viral infection. While neuronal cells are injuries caused by inflammatory cytokine production following microglial/macrophage activation, the blockade of inflammatory cytokines can reduce neurotoxicity to improve the survival rate. This study investigated the involvement of macrophage phenotypes in facilitating CNS inflammation and neurotoxicity during flavivirus infection, including the Japanese encephalitis virus, dengue virus (DENV), and Zika virus. Mice infected with different flaviviruses presented encephalitis-like symptoms, including limbic seizure and paralysis. Histology indicated that brain lesions were identified in the hippocampus and surrounded by mononuclear cells. In those regions, both the infiltrated macrophages and resident microglia were significantly increased. RNA-seq analysis showed the gene profile shifting toward type 1 macrophage (M1) polarization, while M1 markers validated this phenomenon. Pharmacologically blocking C-C chemokine receptor 2 and tumor necrosis factor-α partly retarded DENV-induced M1 polarization. In summary, flavivirus infection, such as JEV and DENV, promoted type 1 macrophage polarization in the brain associated with encephalitic severity.


Subject(s)
Cell Polarity , Dengue Virus/physiology , Encephalitis Virus, Japanese/physiology , Encephalitis, Viral/pathology , Encephalitis, Viral/virology , Macrophages/pathology , Severity of Illness Index , Animals , Animals, Suckling , Cell Line , Disease Models, Animal , Encephalitis, Japanese/immunology , Encephalitis, Japanese/pathology , Encephalitis, Japanese/virology , Encephalitis, Viral/immunology , Hippocampus/pathology , Inflammation/pathology , Mice, Inbred ICR , Neurotoxins/toxicity , Receptors, CCR2/metabolism , Tumor Necrosis Factor-alpha/metabolism
12.
Int J Mol Sci ; 22(16)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34445789

ABSTRACT

The SARS-CoV-2 pseudovirus is a commonly used strategy that mimics certain biological functions of the authentic virus by relying on biological legitimacy at the molecular level. Despite the fact that spike (S), envelope (E), and membrane (M) proteins together wrap up the SARS-CoV-2 virion, most of the reported pseudotype viruses consist of only the S protein. Here, we report that the presence of E and M increased the virion infectivity by promoting the S protein priming. The S, E, and M (SEM)-coated pseudovirion is spherical, containing crown-like spikes on the surface. Both S and SEM pseudoviruses packaged the same amounts of viral RNA, but the SEM virus bound more efficiently to cells stably expressing the viral receptor human angiotensin-converting enzyme II (hACE2) and became more infectious. Using this SEM pseudovirus, we examined the infectivity and antigenic properties of the natural SARS-CoV-2 variants. We showed that some variants have higher infectivity than the original virus and that some render the neutralizing plasma with lower potency. These studies thus revealed possible mechanisms of the dissemination advantage of these variants. Hence, the SEM pseudovirion provides a useful tool to evaluate the viral infectivity and capability of convalescent sera in neutralizing specific SARS-CoV-2 S dominant variants.


Subject(s)
Antibodies, Viral/metabolism , COVID-19/immunology , Coronavirus Envelope Proteins/metabolism , SARS-CoV-2/pathogenicity , Viral Matrix Proteins/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/virology , Cell Line , Coronavirus Envelope Proteins/genetics , Coronavirus Envelope Proteins/immunology , Coronavirus Envelope Proteins/ultrastructure , Cricetinae , Humans , Microscopy, Electron, Transmission , Mutation , Neutralization Tests , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Viral Matrix Proteins/genetics , Viral Matrix Proteins/immunology , Viral Matrix Proteins/ultrastructure , Virion/genetics , Virion/immunology , Virion/metabolism , Virion/ultrastructure
13.
PLoS Negl Trop Dis ; 15(4): e0009312, 2021 04.
Article in English | MEDLINE | ID: mdl-33793562

ABSTRACT

A shift in dengue cases toward the adult population, accompanied by an increased risk of severe cases of dengue in the elderly, has created an important emerging issue in the past decade. To understand the level of past DENV infection among older adults after a large dengue outbreak occurred in southern Taiwan in 2015, we screened 1498 and 2603 serum samples from healthy residents aged ≥ 40 years in Kaohsiung City and Tainan City, respectively, to assess the seroprevalence of anti-DENV IgG in 2016. Seropositive samples were verified to exclude cross-reaction from Japanese encephalitis virus (JEV), using DENV/JEV-NS1 indirect IgG ELISA. We further identified viral serotypes and secondary DENV infections among positive samples in the two cities. The overall age-standardized seroprevalence of DENV-IgG among participants was 25.77% in Kaohsiung and 11.40% in Tainan, and the seroprevalence was significantly higher in older age groups of both cities. Although the percentages of secondary DENV infection in Kaohsiung and Tainan were very similar (43.09% and 44.76%, respectively), DENV-1 and DENV-2 spanned a wider age range in Kaohsiung, whereas DENV-2 was dominant in Tainan. As very few studies have obtained the serostatus of DENV infection in older adults and the elderly, this study highlights the need for further investigation into antibody status, as well as the safety and efficacy of dengue vaccination in these older populations.


Subject(s)
Antibodies, Viral/blood , Dengue Virus/immunology , Dengue/epidemiology , Adult , Age Factors , Aged , Aged, 80 and over , Dengue Virus/genetics , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/blood , Logistic Models , Male , Middle Aged , Multivariate Analysis , Seroepidemiologic Studies , Taiwan/epidemiology
14.
Int J Mol Sci ; 21(24)2020 Dec 19.
Article in English | MEDLINE | ID: mdl-33352639

ABSTRACT

Dengue virus (DENV) infection is a significant public health threat in tropical and subtropical regions; however, there is no specific antiviral drug. Accumulated studies have revealed that DENV infection induces several cellular responses, including autophagy and apoptosis. The crosstalk between autophagy and apoptosis is associated with the interactions among components of these two pathways, such as apoptotic caspase-mediated cleavage of autophagy-related proteins. Here, we show that DENV-induced autophagy inhibits early cell apoptosis and hence enhances DENV replication. Later, the apoptotic activities are elevated to suppress autophagy through cleavage of Beclin-1, an essential autophagy-related protein. Inhibition of cleavage of Beclin-1 by a pan-caspase inhibitor, Z-VAD, increases both autophagy and viral replication. Regarding the mechanism, we further found that DENV nonstructural protein 1 (NS1) is able to interact with Beclin-1 during DENV infection. The interaction between Beclin-1 and NS1 attenuates Beclin-1 cleavage and facilitates autophagy to prevent cell apoptosis. Our study suggests a novel mechanism whereby NS1 preserves Beclin-1 for maintaining autophagy to antagonize early cell apoptosis; however, elevated caspases trigger apoptosis by degrading Beclin-1 in the late stage of infection. These findings suggest implications for anti-DENV drug design.


Subject(s)
Beclin-1/metabolism , Caspases/metabolism , Dengue Virus/isolation & purification , Dengue/pathology , Dengue/virology , Viral Nonstructural Proteins/metabolism , A549 Cells , Aedes , Animals , Autophagy , Dengue/metabolism , Humans
15.
Proc Natl Acad Sci U S A ; 117(27): 15947-15954, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32576686

ABSTRACT

The cytosolic DNA sensor cGMP-AMP synthase (cGAS) synthesizes the noncanonical cyclic dinucleotide 2'3'-cGAMP to activate the adaptor protein stimulator of IFN genes (STING), thus awakening host immunity in response to DNA pathogen infection. However, dengue virus (DENV), an RNA virus without a DNA stage in its life cycle, also manipulates cGAS-STING-mediated innate immunity by proteolytic degradation of STING. Here, we found that the sensitivity of STING to DENV protease varied with different human STING haplotypes. Exogenous DNA further enhanced DENV protease's ability to interact and cleave protease-sensitive STING. DNA-enhanced STING cleavage was reduced in cGAS-knockdown cells and triggered by the cGAS product 2'3'-cGAMP. The source of DNA may not be endogenous mitochondrial DNA but rather exogenous reactivated viral DNA. Cells producing 2'3'-cGAMP by overexpressing cGAS or with DNA virus reactivation enhanced STING cleavage in neighboring cells harboring DENV protease. DENV infection reduced host innate immunity in cells with the protease-sensitive STING haplotype, whose homozygote genotype frequency was found significantly reduced in Taiwanese people with dengue fever. Therefore, the human STING genetic background and DNA pathogen coinfection may be the missing links contributing to DENV pathogenesis.


Subject(s)
Dengue/enzymology , Endopeptidases/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nucleotides, Cyclic/metabolism , A549 Cells , DNA, Viral/genetics , Dengue/immunology , Endopeptidases/genetics , Haplotypes , Humans , Immune Evasion , Immunity, Innate , Nucleotides, Cyclic/genetics
16.
J Immunol ; 203(7): 1909-1917, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31451673

ABSTRACT

Dengue virus (DENV) causes a range of illness, including dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. DENV nonstructural protein (NS) 1 has been considered to be a desirable vaccine candidate for its ability to induce Ab and complement-dependent cytolysis of DENV-infected cells as well as to block the pathogenic effects of NS1. However a potential drawback of NS1 as a vaccine is that anti-DENV NS1 Abs can lead to endothelial cell damage and platelet dysfunction by antigenic cross-reactivity. Therefore, we modified the DENV NS1 by replacing the C-terminal cross-reactive epitopes with the corresponding region of Japanese encephalitis virus NS1 to generate a chimeric DJ NS1 protein. Active immunization with DJ NS1 induced a strong Ab response. To enhance cellular immunity, we further combined DJ NS1 with DENV NS3 to immunize mice and showed activation of Ag-specific CD4+ and CD8+ T cells in addition to Ab responses. We further detected NS3-specific CTL activities as well as CD107a expression of effector cells. Importantly, the protective effects attributed by DJ NS1 and NS3 immunization were demonstrated in a DENV-infected mouse model by reduced viral titers, soluble NS1 levels, mouse tail bleeding time, and vascular leakage at skin injection sites. Collectively, the results from this study reveal the humoral and cellular immune responses and the protective effects conferred by DJ NS1 and NS3 immunization in the mouse model of DENV infection and provide a potential strategy for dengue vaccine design.


Subject(s)
Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/prevention & control , Immunity, Cellular , Immunization , Viral Nonstructural Proteins/immunology , Animals , Cross Reactions , Dengue/immunology , Dengue/pathology , Epitopes/immunology , Male , Mice
17.
Front Immunol ; 9: 2860, 2018.
Article in English | MEDLINE | ID: mdl-30564245

ABSTRACT

In the battle between a virus and its host, innate immunity serves as the first line of defense protecting the host against pathogens. The antiviral actions start with the recognition of pathogen-associated molecular patterns derived from the virus, then ultimately turning on particular transcription factors to generate antiviral interferons (IFNs) or proinflammatory cytokines via fine-tuned signaling cascades. With dengue virus (DENV) infection, its viral RNA is recognized by the host RNA sensors, mainly retinoic acid inducible gene-I (RIG-I)-like receptors (RLRs) and toll-like receptors. DENV infection also activates the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING)-mediated DNA-sensing pathway despite the absence of a DNA stage in the DENV lifecycle. In the last decade, DENV has been considered a weak IFN-inducing pathogen with the evidence that DENV has evolved multiple strategies antagonizing the host IFN system. DENV passively escapes from innate immunity surveillance and also actively subverts the innate immune system at multiple steps. DENV targets both RNA-triggered RLR-mitochondrial antiviral signaling protein (RLR-MAVS) and DNA-triggered cGAS-STING signaling to reduce IFN production in infected cells. It also blocks IFN action by inhibiting IFN regulatory factor- and signal transducer and activator of transcription-mediated signaling. This review explores the current understanding of how DENV escapes the control of the innate immune system by modifying viral RNA and viral protein and by post-translational modification of cellular factors. The roles of the DNA-sensing pathway in DENV infection, and how mitochondrial dynamics participates in innate immunity are also discussed.


Subject(s)
Dengue Virus/immunology , Dengue/immunology , Host-Pathogen Interactions/immunology , Immune Evasion , Immunity, Innate , Adaptor Proteins, Signal Transducing/immunology , Adaptor Proteins, Signal Transducing/metabolism , Dengue/virology , Dengue Virus/genetics , Humans , Interferons/immunology , Interferons/metabolism , Membrane Proteins/immunology , Membrane Proteins/metabolism , Nucleotidyltransferases/immunology , Nucleotidyltransferases/metabolism , Protein Processing, Post-Translational/immunology , RNA, Viral/metabolism , Signal Transduction/immunology , Toll-Like Receptors/immunology , Toll-Like Receptors/metabolism , Viral Proteins/immunology , Viral Proteins/metabolism
18.
Sci Rep ; 6: 32243, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27558165

ABSTRACT

One of the major defense mechanisms against virus spread in vivo is the blocking of viral infectibility by neutralizing antibodies. We describe here the identification of infectious autophagy-associated dengue vesicles released from infected cells. These vesicles contain viral proteins E, NS1, prM/M, and viral RNA, as well as host lipid droplets and LC3-II, an autophagy marker. The viral RNA can be protected within the autophagic organelles since anti-dengue neutralizing antibodies do not have an effect on the vesicle-mediated transmission that is able to initiate a new round of infection in target cells. Importantly, such infectious vesicles were also detected in a patient serum. Our study suggests that autophagy machinery plays a new role in dengue virus transmission. This discovery explains the inefficiency of neutralizing antibody upon dengue infection as a potential immune evasion mechanism in vivo.


Subject(s)
Dengue Virus/metabolism , Dengue , RNA, Viral/metabolism , Secretory Vesicles , Viral Proteins/metabolism , Virus Release , Aedes , Animals , Autophagy , Cell Line , Dengue/metabolism , Dengue/pathology , Dengue/transmission , Dengue Virus/pathogenicity , Humans , Secretory Vesicles/metabolism , Secretory Vesicles/pathology , Secretory Vesicles/virology
19.
Sci Rep ; 6: 32000, 2016 08 26.
Article in English | MEDLINE | ID: mdl-27561946

ABSTRACT

Infection by the dengue virus (DENV) threatens global public health due to its high prevalence and the lack of effective treatments. Host factors may contribute to the pathogenesis of DENV; herein, we investigated the role of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which is activated by DENV in mononuclear phagocytes. DENV infection selectively activates Nrf2 following nuclear translocation. Following endoplasmic reticular (ER) stress, protein kinase R-like ER kinase (PERK) facilitated Nrf2-mediated transcriptional activation of C-type lectin domain family 5, member A (CLEC5A) to increase CLEC5A expression. Signaling downstream of the Nrf2-CLEC5A interaction enhances Toll-like receptor 3 (TLR3)-independent tumor necrosis factor (TNF)-α production following DENV infection. Forced expression of the NS2B3 viral protein induces Nrf2 nuclear translocation/activation and CLEC5A expression which increases DENV-induced TNF-α production. Animal studies confirmed Nrf2-induced CLEC5A and TNF-α in brains of DENV-infected mice. These results demonstrate that DENV infection causes Nrf2-regulated TNF-α production by increasing levels of CLEC5A.


Subject(s)
Dengue Virus/physiology , Lectins, C-Type/metabolism , Monocytes/virology , NF-E2-Related Factor 2/physiology , Receptors, Cell Surface/metabolism , Tumor Necrosis Factor-alpha/biosynthesis , Active Transport, Cell Nucleus , Animals , Cell Line , Cell Nucleus/metabolism , Cricetinae , Humans , Mice , Monocytes/metabolism , Signal Transduction , Toll-Like Receptor 3/metabolism , Transcriptional Activation , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
20.
J Virol ; 90(9): 4308-4319, 2016 May.
Article in English | MEDLINE | ID: mdl-26889037

ABSTRACT

UNLABELLED: Small ubiquitin-like modifier (SUMO) participates in a reversible posttranslational modification process (SUMOylation) that regulates a wide variety of cellular processes and plays important roles for numerous viruses during infection. However, the roles of viral protein SUMOylation in dengue virus (DENV) infection have not been elucidated. In this study, we found that the SUMOylation pathway was involved in the DENV life cycle, since DENV replication was reduced by silencing the cellular gene Ubc9, which encodes the sole E2-conjugating enzyme required for SUMOylation. By in vivo and in vitro SUMOylation assays, the DENV NS5 protein was identified as an authentic SUMO-targeted protein. By expressing various NS5 mutants, we found that the SUMO acceptor sites are located in the N-terminal domain of NS5 and that a putative SUMO-interacting motif (SIM) of this domain is crucial for its SUMOylation. A DENV replicon harboring the SUMOylation-defective SIM mutant showed a severe defect in viral RNA replication, supporting the notion that NS5 SUMOylation is required for DENV replication. SUMOylation-defective mutants also failed to suppress the induction of STAT2-mediated host antiviral interferon signaling. Furthermore, the SUMOylation of NS5 significantly increased the stability of NS5 protein, which could account for most of the biological functions of SUMOylated NS5. Collectively, these findings suggest that the SUMOylation of DENV NS5 is one of the mechanisms regulating DENV replication. IMPORTANCE: SUMOylation is a common posttranslational modification that regulates cellular protein functions but has not been reported in the proteins of dengue virus. Here, we found that the replicase of DENV, nonstructural protein 5 (NS5), can be SUMOylated. It is well known that providing RNA-dependent RNA polymerase activity and antagonizing host antiviral IFN signaling are a "double indemnity" of NS5 to support DENV replication. Without SUMOylation, NS5 fails to maintain its protein stability, which consequently disrupts its function in viral RNA replication and innate immunity antagonism. DENV threatens billions of people worldwide, but no licensed vaccine or specific therapeutics are currently available. Thus, our findings suggest that rather than specifically targeting NS5 enzyme activity, NS5 protein stability is a novel drug target on the growing list of anti-DENV strategies.


Subject(s)
Dengue Virus/physiology , Viral Nonstructural Proteins/metabolism , Virus Replication , Amino Acid Motifs , Amino Acid Sequence , Animals , Cell Line , Cells, Cultured , Dengue/genetics , Dengue/metabolism , Dengue/virology , Gene Silencing , Humans , Molecular Sequence Data , Protein Interaction Domains and Motifs , Protein Stability , RNA Interference , Sequence Alignment , Sumoylation , Ubiquitin-Conjugating Enzymes/genetics , Viral Nonstructural Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...