Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.231
Filter
2.
Int Immunopharmacol ; 136: 112383, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38843642

ABSTRACT

The treatment of autoimmune and inflammatory diseases often requires targeting multiple pathogenic pathways. KYS202004A is a novel bispecific fusion protein designed to antagonize TNF-α and IL-17A, pivotal in the pathophysiology of autoimmune and inflammatory diseases. Our initial efforts focused on screening for optimal structure by analyzing expression levels, purity, and binding capabilities. The binding affinity of KYS202004A to TNF-α and IL-17A was evaluated using SPR. In vitro, we assessed the inhibitory capacity of KYS202004A on cytokine-induced CXCL1 expression in HT29 cells. In vivo, its efficacy was tested using a Collagen-Induced Arthritis (CIA) model in transgenic human-IL-17A mice and an imiquimod-induced psoriasis model in cynomolgus monkeys. KYS202004A demonstrated significant inhibition of IL-17A and TNF-α signaling pathways, outperforming the efficacy of monotherapeutic agents ixekizumab and etanercept in reducing CXCL1 expression in vitro and ameliorating disease markers in vivo. In the CIA model, KYS202004A significantly reduced clinical symptoms, joint destruction, and serum IL-6 concentrations. The psoriasis model revealed that KYS202004A, particularly at a 2  mg/kg dose, was as effective as the combination of ixekizumab and etanercept. This discovery represents a significant advancement in treating autoimmune and inflammatory diseases, offering a dual-targeted therapeutic approach with enhanced efficacy over current monotherapies.


Subject(s)
Arthritis, Experimental , Interleukin-17 , Macaca fascicularis , Psoriasis , Recombinant Fusion Proteins , Tumor Necrosis Factor-alpha , Animals , Interleukin-17/metabolism , Tumor Necrosis Factor-alpha/metabolism , Humans , Psoriasis/drug therapy , Psoriasis/immunology , Psoriasis/chemically induced , Recombinant Fusion Proteins/therapeutic use , Recombinant Fusion Proteins/pharmacology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/immunology , Mice , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , HT29 Cells , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Mice, Transgenic , Disease Models, Animal , Antibodies, Bispecific/therapeutic use , Antibodies, Bispecific/pharmacology , Male , Drug Evaluation, Preclinical , Imiquimod , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Mice, Inbred DBA
3.
Sci Total Environ ; 943: 173831, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38866152

ABSTRACT

The plant microbiome plays a crucial role in facilitating plant growth through enhancing nutrient cycling, acquisition and transport, as well as alleviating stresses induced by nutrient limitations. Despite its significance, the relative importance of common agronomic practices, such as nitrogenous fertilizer, in shaping the plant microbiome across different cultivars remains unclear. This study investigated the dynamics of bacterial and fungal communities in leaf, root, rhizosphere, and bulk soil in response to nitrogenous fertilizer across ten sorghum varieties, using 16S rRNA and ITS gene amplicon sequencing, respectively. Our results revealed that nitrogen addition had a greater impact on sorghum-associated microbial communities compared to cultivar. Nitrogen addition significantly reduced bacterial diversity in all compartments except for the root endophytes. However, N addition significantly increased fungal diversity in both rhizosphere and bulk soils, while significantly reducing fungal diversity in the root endophytes. Furthermore, N addition significantly altered the community composition of bacteria and fungi in all four compartments, while cultivars only affected the community composition of root endosphere bacteria and fungi. Network analysis revealed that fertilization significantly reduced microbial network complexity and increased fungal-related network complexity. Collectively, this study provides empirical evidence that sorghum-associated microbiomes are predominantly shaped by nitrogenous fertilizer rather than by cultivars, suggesting that consistent application of nitrogenous fertilizer will ultimately alter plant-associated microbiomes regardless of cultivar selection.


Subject(s)
Fertilizers , Microbiota , Nitrogen , Soil Microbiology , Sorghum , Sorghum/microbiology , Nitrogen/analysis , Bacteria/classification , Fungi/physiology , Rhizosphere , RNA, Ribosomal, 16S , Plant Roots/microbiology
4.
Mol Cancer Res ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888574

ABSTRACT

Metabolic reprogramming of aerobic glycolysis contributes to tumorigenesis. High plasma lactate is a critical regulator in the development of many human malignancies; however, the underlying molecular mechanisms of cancer progression in the response to lactate (LA) remain elusive. Here we show that reduction of Yin-Yang 1 (YY1) expression correlated with high LA commonly occurs in various cancer cell types, including B-lymphoma and cervical cancer. Mechanistically, LA induces YY1 nuclear export and degradation via HSP70-mediated autophagy adjacent to mitochondria in a Histidine-rich LAR (LA-responsive) motif-dependent manner. Mutation of the LAR motif blocks LA-mediated YY1 cytoplasmic accumulation and in turn enhances cell apoptosis. Furthermore, low expression of YY1 promotes the colony formation, invasion, angiogenesis and growth of cancer cells in response to LA in vitro and in vivo using a murine xenograft model. Taken together, our findings reveal that a key lactate-responsive` element and may serve as therapeutic target for intervening cancer progression. Implications: We have shown lactate can induce YY1 degradation via its Histidine-rich LAR motif, and low expression of YY1 promotes cancer cell progression in response to lactate, leading to better prediction of YY1-targeting therapy.

5.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892163

ABSTRACT

Extreme weather poses huge challenges for animals that must adapt to wide variations in environmental temperature and, in many cases, it can lead to the local extirpation of populations or even the extinction of an entire species. Previous studies have found that one element of amphibian adaptation to environmental stress involves changes in mitochondrial gene expression at low temperatures. However, to date, comparative studies of gene expression in organisms living at extreme temperatures have focused mainly on nuclear genes. This study sequenced the complete mitochondrial genomes of five Asian hylid frog species: Dryophytes japonicus, D. immaculata, Hyla annectans, H. chinensis and H. zhaopingensis. It compared the phylogenetic relationships within the Hylidae family and explored the association between mitochondrial gene expression and evolutionary adaptations to cold stress. The present results showed that in D. immaculata, transcript levels of 12 out of 13 mitochondria genes were significantly reduced under cold exposure (p < 0.05); hence, we put forward the conjecture that D. immaculata adapts by entering a hibernation state at low temperature. In H. annectans, the transcripts of 10 genes (ND1, ND2, ND3, ND4, ND4L, ND5, ND6, COX1, COX2 and ATP8) were significantly reduced in response to cold exposure, and five mitochondrial genes in H. chinensis (ND1, ND2, ND3, ND4L and ATP6) also showed significantly reduced expression and transcript levels under cold conditions. By contrast, transcript levels of ND2 and ATP6 in H. zhaopingensis were significantly increased at low temperatures, possibly related to the narrow distribution of this species primarily at low latitudes. Indeed, H. zhaopingensis has little ability to adapt to low temperature (4 °C), or maybe to enter into hibernation, and it shows metabolic disorder in the cold. The present study demonstrates that the regulatory trend of mitochondrial gene expression in amphibians is correlated with their ability to adapt to variable climates in extreme environments. These results can predict which species are more likely to undergo extirpation or extinction with climate change and, thereby, provide new ideas for the study of species extinction in highly variable winter climates.


Subject(s)
Anura , Genome, Mitochondrial , Phylogeny , Animals , Anura/genetics , Anura/physiology , Cold-Shock Response/genetics , Cold Temperature , Adaptation, Physiological/genetics , Gene Expression Regulation
6.
Nat Mach Intell ; 6(4): 449-460, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38855263

ABSTRACT

The 5' UTR, a regulatory region at the beginning of an mRNA molecule, plays a crucial role in regulating the translation process and impacts the protein expression level. Language models have showcased their effectiveness in decoding the functions of protein and genome sequences. Here, we introduced a language model for 5' UTR, which we refer to as the UTR-LM. The UTR-LM is pre-trained on endogenous 5' UTRs from multiple species and is further augmented with supervised information including secondary structure and minimum free energy. We fine-tuned the UTR-LM in a variety of downstream tasks. The model outperformed the best known benchmark by up to 5% for predicting the Mean Ribosome Loading, and by up to 8% for predicting the Translation Efficiency and the mRNA Expression Level. The model also applies to identifying unannotated Internal Ribosome Entry Sites within the untranslated region and improves the AUPR from 0.37 to 0.52 compared to the best baseline. Further, we designed a library of 211 novel 5' UTRs with high predicted values of translation efficiency and evaluated them via a wet-lab assay. Experiment results confirmed that our top designs achieved a 32.5% increase in protein production level relative to well-established 5' UTR optimized for therapeutics.

7.
J Clin Microbiol ; : e0047924, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856218

ABSTRACT

The diagnosis of invasive pulmonary fungal disease depends on histopathology and mycological culture; there are few studies on touch imprints of bronchoscopic biopsies or lung tissue biopsies for the diagnosis of pulmonary filamentous fungi infections. The purpose of the present study was to explore the detection accuracy of rapid on-site evaluation of touch imprints of bronchoscopic biopsies or lung tissue biopsies for the filamentous fungi, and it aims to provide a basis for initiating antifungal therapy before obtaining microbiological evidence. We retrospectively analyzed the diagnosis and treatment of 44 non-neutropenic patients with invasive pulmonary filamentous fungi confirmed by glactomannan assay, histopathology, and culture from February 2017 to December 2023. The diagnostic positive rate and sensitivity of rapid on-site evaluation for these filamentous fungi identification, including diagnostic turnaround time, were calculated. Compared with the final diagnosis, the sensitivity of rapid on-site evaluation was 81.8%, and the sensitivity of histopathology, culture of bronchoalveolar lavage fluid, and glactomannan assay of bronchoalveolar lavage fluid was 86.4%, 52.3%, and 68.2%, respectively. The average turnaround time of detecting filamentous fungi by rapid on-site evaluation was 0.17 ± 0.03 hours, which was significantly faster than histopathology, glactomannan assay, and mycological culture. A total of 29 (76.3%) patients received earlier antifungal therapy based on ROSE diagnosis and demonstrated clinical improvement. Rapid on-site evaluation showed good sensitivity and accuracy that can be comparable to histopathology in identification of pulmonary filamentous fungi. Importantly, it contributed to the triage of biopsies for further microbial culture or molecular detection based on the preliminary diagnosis, and the decision on early antifungal therapy before microbiological evidence is available.

8.
Inorg Chem ; 63(25): 11768-11778, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38864539

ABSTRACT

The exploration of low-cost, efficient, environmentally safe, and selective catalysts for the activation of carbon-halogen bonds has become an important and challenging topic in modern chemistry. With the help of density functional theory (DFT), it is found that phenyl bromide (PhBr) can be efficiently chemisorbed by the Al12M (M = Be, Al, C, and P) superatoms via forming highly polarized Al-Br covalent bonds, where the C-Br bonds of PhBr can be effectively activated through the electron transfer from Al12M. The different electronic structures of these four Al12M superatoms pose a substantial effect on their performances on the activation of PhBr and the catalytic mechanisms of the Suzuki-Miyaura (SM) reaction. Among them, the alkali-metal-like superatom Al12P exhibits the best performance for the activation of PhBr. In particular, Al13 and Al12P with open-shell electronic structures exhibit catalytic performances comparable to those of previously reported catalysts for this coupling reaction. Hence, it is highly expected that Al13 and Al12P could be used as novel superatom catalysts for C-C coupling reactions and, therefore, open up new possibilities to use nonprecious superatoms in catalyzing the activation and transformation of carbon-halogen bonds.

9.
Mol Cancer ; 23(1): 128, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890620

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) play important roles in cancer progression and metastasis. However, the expression profiles and biological roles of circRNAs in non-small cell lung cancer (NSCLC) remain unclear. METHODS: In this study, we identified a novel circRNA, hsa_circ_0006834 (termed circ6834), in NSCLC by RNA-seq and investigated the biological role of circ6834 in NSCLC progression in vitro and in vivo. Finally, the molecular mechanism of circ6834 was revealed by tagged RNA affinity purification (TRAP), western blot, RNA immunoprecipitation, dual luciferase reporter gene assays and rescue experiments. RESULTS: Our results showed that circ6834 was downregulated in NSCLC tumor tissues and cell lines. Circ6834 overexpression inhibited NSCLC cell growth and metastasis both in vitro and in vivo, while circ6834 knockdown had the opposite effect. We found that TGF-ß treatment decreased circ6834 expression, which was associated with the QKI reduction in NSCLC cells and circ6834 antagonized TGF-ß-induced EMT and metastasis in NSCLC cells. Mechanistically, circ6834 bound to AHNAK protein, a key regulator of TGF-ß/Smad signaling, and inhibited its stability by enhancing TRIM25-mediated ubiquitination and degradation. In addition, circ6834 acted as a miRNA sponge for miR-873-5p and upregulated TXNIP gene expression, which together inactivated the TGF-ß/Smad signaling pathway in NSCLC cells. CONCLUSION: In conclusion, circ6834 is a tumor-suppressive circRNA that inhibits NSCLC progression by forming a negative regulatory feedback loop with the TGF-ß/Smad signaling pathway and represents a novel therapeutic target for NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carrier Proteins , Cell Proliferation , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , RNA, Circular , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , RNA, Circular/genetics , MicroRNAs/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Animals , Mice , Cell Line, Tumor , Carrier Proteins/genetics , Carrier Proteins/metabolism , Disease Progression , Cell Movement/genetics , Signal Transduction , Female , Transforming Growth Factor beta/metabolism , Male , Epithelial-Mesenchymal Transition/genetics
10.
Opt Express ; 32(9): 15645-15657, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859210

ABSTRACT

The spectral emission of laser-induced plasma in water has a broadband continuum containing ultraviolet light, which can be used as a novel light source for the degradation of organic compounds. We studied the degradation process of the organic dye Rhodamine B (RhB) using plasma light source excited by the "Laser + Fe" mode. Spectral analysis and reaction kinetics modelling were used to study the degradation mechanism. The degradation process using this light source could be divided into two stages. The initial stage was mainly photocatalytic degradation, where ultraviolet light broke the chemical bond of RhB, and then RhB was degraded by the strong oxidising ability of ·OH. As the iron and hydrogen ion concentrations increased, the synergistic effect of photocatalysis and the Fenton reaction further enhanced the degradation rate in the later stage. The plasma excited by the "Laser + Fe" mode achieved photodegradation by effectively enhancing the ultraviolet wavelength ratio of the emission spectrum and triggered the Fenton reaction to achieve rapid organic matter degradation. Our findings indicate that the participation of the Fenton reaction can increase the degradation rate by approximately 10 times. Besides, the impact of pH on degradation efficiency demonstrates that both acidic and alkaline environments have better degradation effects than neutral conditions; this is because acidic environments can enhance the Fenton reaction, while alkaline environments can provide more ·OH.

11.
Opt Express ; 32(12): 21304-21326, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38859488

ABSTRACT

Precious metal doping can effectively improves the catalytic performance of TiO2. In this study, pulsed laser ablation in liquid (PLAL) is employed to integrate preparation with doping and control composite nanoparticle products by adjusting the laser action time to synthesise Ag-TiO2 composite nanoparticles with high catalytic performance. The generation and evolution of Ag-TiO2 nanoparticles are investigated by analysing particle size, microscopic morphology, crystalline phase, and other characteristics. The generation and doped-morphology evolution of composite nanoparticles are simulated based on thermodynamics, and the optimisation of Ag-doped structure on the composite nanomaterials is investigated based on density functional theory. The effect of Ag-TiO2 structural properties on its performance is examined under different catalytic conditions to determine optimal degradation conditions. In this study, the effect of laser ablation time on the doped structure during PLAL is analysed, which is of further research significance in exploring the structural evolution law of laser and composite nanoparticles, multi-variate catalytic performance testing, reduction of photogenerated carrier complexation rate, and expansion of its spectral absorption range, thereby providing the basis for practical production.

12.
Article in English | MEDLINE | ID: mdl-38922572

ABSTRACT

This review summarizes the multiple roles of miRNAs in the prediction and treatment of heart failure (HF), including the molecular mechanisms regulating cell apoptosis, myocardial fibrosis, cardiac hypertrophy and ventricular remodelling, and highlights the importance of miRNAs in the prognosis of HF. In addition, the strategies for alleviating HF with miRNA intervention are discussed. On the basis of the challenges and emerging directions in the research and clinical practice of HF miRNAs, it is proposed that miRNA-based therapy could be a new approach for prevention and treatment of HF.

13.
Front Oncol ; 14: 1399047, 2024.
Article in English | MEDLINE | ID: mdl-38915366

ABSTRACT

Background: The prognostic value of an effective biomarker, pan-immune-inflammation value (PIV), for head and neck squamous cell carcinoma (HNSCC) patients after radical surgery or chemoradiotherapy has not been well explored. This study aimed to construct and validate nomograms based on PIV to predict survival outcomes of HNSCC patients. Methods: A total of 161 HNSCC patients who underwent radical surgery were enrolled retrospectively for development cohort. The cutoff of PIV was determined using the maximally selected rank statistics method. Multivariable Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses were performed to develop two nomograms (Model A and Model B) that predict disease-free survival (DFS). The concordance index, receiver operating characteristic curves, calibration curves, and decision curve analysis were used to evaluate the nomograms. A cohort composed of 50 patients who received radiotherapy or chemoradiotherapy (RT/CRT) alone was applied for generality testing of PIV and nomograms. Results: Patients with higher PIV (≥123.3) experienced a worse DFS (HR, 5.01; 95% CI, 3.25-7.72; p<0.0001) and overall survival (OS) (HR, 5.23; 95% CI, 3.34-8.18; p<0.0001) compared to patients with lower PIV (<123.3) in the development cohort. Predictors of Model A included age, TNM stage, neutrophil-to-lymphocyte ratio (NLR), and PIV, and that of Model B included TNM stage, lymphocyte-to-monocyte ratio (LMR), and PIV. In comparison with TNM stage alone, the two nomograms demonstrated good calibration and discrimination and showed satisfactory clinical utility in internal validation. The generality testing results showed that higher PIV was also associated with worse survival outcomes in the RT/CRT cohort and the possibility that the two nomograms may have a universal applicability for patients with different treatments. Conclusions: The nomograms based on PIV, a simple but useful indicator, can provide prognosis prediction of individual HNSCC patients after radical surgery and may be broadly applicated for patients after RT/CRT alone.

14.
DNA Res ; 31(3)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38807352

ABSTRACT

Leuciscus merzbacheri is a native fish species found exclusively in the Junggar Basin in Xinjiang. It exhibits remarkable adaptability, thriving in varying water conditions such as the saline waters, the semi-saline water, and the freshwater. Despite its significant economic and ecological value, the underlying mechanisms of its remarkable salinity tolerance remain elusive. Our study marks the first time the full-length transcriptome of L. merzbacheri has been reported, utilizing RNA-Seq and PacBio Iso-Seq technologies. We found that the average length of the full-length transcriptome is 1,780 bp, with an N50 length of 2,358 bp. We collected RNA-Seq data from gill, liver, and kidney tissues of L. merzbacheri from both saline water and freshwater environments and conducted comparative analyses across these tissues. Further analysis revealed significant enrichment in several key functional gene categories and signalling pathways related to stress response and environmental adaptation. The findings provide a valuable genetic resource for further investigation into saline-responsive candidate genes, which will deepen our understanding of teleost adaptation to extreme environmental stress. This knowledge is crucial for the future breeding and conservation of native fish species.


Subject(s)
RNA-Seq , Transcriptome , Animals , Cyprinidae/genetics , Adaptation, Physiological/genetics , Salt Stress , Salinity , Gene Expression Profiling , Gills/metabolism
15.
Ann Surg Oncol ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762645

ABSTRACT

BACKGROUND: Cough is a common symptom that affects patients' recovery and quality of life after esophagectomy. This study sought to investigate trends in postoperative cough and the factors that influence cough. METHODS: A total of 208 of 225 patients were enrolled in this study. The Mandarin Chinese version of the Leicester Cough Questionnaire was administered the day before surgery and at three time points (1 week, 1 month, and 3 months) after esophagectomy to assess patient-reported outcomes. RESULTS: All patients' LCQ-MC scores after surgery were lower than presurgery (P < 0.05), with the lowest score found 1 week after esophagectomy. Factors associated with a cough 1 week after surgery included clinical stage of cancer (OR 0.782, 95% CI 0.647-0.944, P = 0.011), anastomotic position (OR 1.241, 95% CI 1.069-1.441, P = 0.005), duration of surgery (OR 0.759, 95% CI 0.577-0.998, P = 0.049), and subcarinal lymph node dissection (OR 0.682, 95% CI 0.563-0.825, P < 0.001). Factors associated with a cough one month after surgery included clinical stage (OR 0.782, 95% CI 0.650-0.940, P = 0.009), anastomotic position (OR 1.293, 95% CI 1.113-1.503, P = 0.001), and maintaining a semi-reclining position (OR 1.440, 95% CI 1.175-1.766, P < 0.001). Factors associated with a cough 3 months after surgery were clinical stage (OR 0.741, 95% CI 0.591-0.928, P = 0.009) and anastomotic position (OR 1.220, 95% CI 1.037-1.435, P = 0.016). CONCLUSIONS: This study showed that the factors influencing postoperative cough differed over time following esophagectomy. These results may warrant prospective intervention to better manage patients undergoing surgery for esophageal cancer to prevent postoperative cough.

16.
Sci Total Environ ; 932: 173030, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38719043

ABSTRACT

Antibiotic pollution and biological invasion pose significant risks to freshwater biodiversity and ecosystem health. However, few studies have compared the ecological adaptability and ciprofloxacin (CIPR) degradation potential between alien and native macrophytes. We examined growth, physiological response, and CIPR accumulation, translocation and metabolic abilities of two alien plants (Eichhornia crassipes and Myriophyllum aquaticum) and one native submerged species (Vallisneria natans) exposed to CIPR at 0, 1 and 10 mg/L. We found that E. crassipes and M. aquaticum's growth were unaffected by CIPR while V. natans was significantly hindered under the 10 mg/L treatment. CIPR significantly decreased the maximal quantum yield of PSII, actual quantum yield of PSII and relative electron transfer rate in E. crassipes and V. natans but didn't impact these photosynthetic characteristics in M. aquaticum. All the plants can accumulate, translocate and metabolize CIPR. M. aquaticum and E. crassipes in the 10 mg/L treatment group showed greater CIPR accumulation potential than V. natans indicated by higher CIPR contents in their roots. The oxidative cleavage of the piperazine ring acts as a key pathway for these aquatic plants to metabolize CIPR and the metabolites mainly distributed in plant roots. M. aquaticum and E. crassipes showed a higher production of CIPR metabolites compared to V. natans, with M. aquaticum exhibiting the strongest CIPR metabolic ability, as indicated by the most extensive structural breakdown of CIPR and the largest number of potential metabolic pathways. Taken together, alien species outperformed the native species in ecological adaptability, CIPR accumulation and metabolic capacity. These findings may shed light on the successful invasion mechanisms of alien aquatic species under antibiotic pressure and highlight the potential ecological impacts of alien species, particularly M. aquaticum. Additionally, the interaction of antibiotic contamination and invasion might further challenge the native submerged macrophytes and pose greater risks to freshwater ecosystems.


Subject(s)
Ciprofloxacin , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Introduced Species , Eichhornia/metabolism , Eichhornia/physiology , Anti-Bacterial Agents/toxicity , Hydrocharitaceae/physiology , Hydrocharitaceae/metabolism , Biodegradation, Environmental
17.
J Fish Biol ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712539

ABSTRACT

The hemicultrine fishes are a group of small-sized cyprinids, widely distributed but endemic to East Asian rivers and lakes. Till now, the taxonomic boundaries and relationships within this group remain poorly explored. In the present study, we study the phylogeny of this group, providing suggestions for classification of the hemicultrine group. Using two mitochondrial and three nuclear genes, and samples representing all genera, our results showed that the group consists of seven major lineages, of which four (Hemiculterella, Hainania, Pseudolaubuca, and Anabarilius) were monophyletic and three (Hemiculter, Toxabramis, and Pseudohemiculter) were not. Based on the phylogenetic tree, we redefined the genera. We revive the genus Siniichthys, which has three species, Siniichthys bleekeri, Siniichthys lucidus, and S. varpachovskii, that were previously treated as members of the genus Hemiculter but showed distant relationships to the genus Hemiculter in our phylogenetic tree. With the new results, a diagnostic key for clades of the hemicultrine group is provided. Furthermore, we provide more detailed information on diagnostic features of the recently described species Hemiculter yungaoi (Vasil'eva et al., 2022). This work will facilitate future systematic studies, pave the way for evolutionary studies, and provide valuable information for the urgent conservation of hemicultrine fishes.

18.
Front Neurosci ; 18: 1380886, 2024.
Article in English | MEDLINE | ID: mdl-38716252

ABSTRACT

Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder that significantly affects children and adults worldwide, characterized by persistent inattention, hyperactivity, and impulsivity. Current research in this field faces challenges, particularly in accurate diagnosis and effective treatment strategies. The analysis of motor information, enriched by artificial intelligence methodologies, plays a vital role in deepening our understanding and improving the management of ADHD. The integration of AI techniques, such as machine learning and data analysis, into the study of ADHD-related motor behaviors, allows for a more nuanced understanding of the disorder. This approach facilitates the identification of patterns and anomalies in motor activity that are often characteristic of ADHD, thereby contributing to more precise diagnostics and tailored treatment strategies. Our approach focuses on utilizing AI techniques to deeply analyze patients' motor information and cognitive processes, aiming to improve ADHD diagnosis and treatment strategies. On the ADHD dataset, the model significantly improved accuracy to 98.21% and recall to 93.86%, especially excelling in EEG data processing with accuracy and recall rates of 96.62 and 95.21%, respectively, demonstrating precise capturing of ADHD characteristic behaviors and physiological responses. These results not only reveal the great potential of our model in improving ADHD diagnostic accuracy and developing personalized treatment plans, but also open up new research perspectives for understanding the complex neurological logic of ADHD. In addition, our study not only suggests innovative perspectives and approaches for ADHD treatment, but also provides a solid foundation for future research exploring similar complex neurological disorders, providing valuable data and insights. This is scientifically important for improving treatment outcomes and patients' quality of life, and points the way for future-oriented medical research and clinical practice.

19.
PLoS One ; 19(5): e0301809, 2024.
Article in English | MEDLINE | ID: mdl-38696412

ABSTRACT

The HIV-1 provirus mainly consists of internal coding region flanked by 1 long terminal repeats (LTRs) at each terminus. The LTRs play important roles in HIV-1 reverse transcription, integration, and transcription. However, despite of the significant study advances of the internal coding regions of HIV-1 by using definite reference classification, there are no systematic and phylogenetic classifications for HIV-1 5' LTRs, which hinders our elaboration on 5' LTR and a better understanding of the viral origin, spread and therapy. Here, by analyzing all available resources of 5' LTR sequences in public databases following 4 recognized principles for the reference classification, 83 representatives and 14 consensus sequences were identified as representatives of 2 groups, 6 subtypes, 6 sub-subtypes, and 9 CRFs. To test the reliability of the supplemented classification system, the constructed references were applied to identify the 5' LTR assignment of the 22 clinical isolates in China. The results revealed that 16 out of 22 tested strains showed a consistent subtype classification with the previous LTR-independent classification system. However, 6 strains, for which recombination events within 5' LTR were demonstrated, unexpectedly showed a different subtype classification, leading a significant change of binding sites for important transcription factors including SP1, p53, and NF-κB. The binding change of these transcriptional factors would probably affect the transcriptional activity of 5' LTR. This study supplemented a unified classification system for HIV-1 5' LTRs, which will facilitate HIV-1 characterization and be helpful for both basic and clinical research fields.


Subject(s)
HIV Long Terminal Repeat , HIV-1 , Phylogeny , HIV-1/genetics , HIV-1/classification , HIV Long Terminal Repeat/genetics , Humans , Binding Sites
20.
Sci Total Environ ; 933: 173171, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38740208

ABSTRACT

Phosphogypsum (PG) is the produced solid waste during phosphorus (P) extraction from phosphate rocks. PG is featured by its abundant PO43- and SO42-. This study investigated the utilization of PG as a material for lead (Pb) remediation, with the assistance of functional fungus. Aspergillus niger (A. niger) is a typical phosphate-solubilizing fungi (PSF), which has high ability to secret organic acids. Oxalic acid is its major secreted organic acid, which is often applied to enhance the P release from phosphate minerals. In this study, synthetic oxalic acid increased the immobilization rate of Pb2+ up to >99 % with the addition of PG. Then, it was observed that biogenic oxalic acid from A. niger can achieve comparable remediation effects. This was due to that PG could provide sufficient P for fungal growth, which allowed sustainable remediation. Subsequently, oxalic acid secreted by A. niger significantly increased the release of active P from PG, and then induced the formation of PPb minerals. In addition, other metabolites of A. niger (such as tyrosine-like substance) can also be complexed with Pb2+. Simultaneously, A. niger did not induce evidently elevation water-soluble fluorine (F) as PG contained abundant Ca2+. Moreover, this study elucidated that oversupply of PG promoted the formation of anglesite (Ksp = 1.6 × 10-8, relatively unstable), whereas the formation of lead oxalate (Ksp = 4.8 × 10-10, relatively stable) was reduced. This study hence shed a bright light on the sustainable utilization of PG for fungus-assisted remediation of heavy metals.


Subject(s)
Aspergillus niger , Biodegradation, Environmental , Calcium Sulfate , Lead , Phosphates , Phosphorus , Soil Pollutants , Lead/metabolism , Phosphorus/metabolism , Aspergillus niger/metabolism , Phosphates/metabolism , Soil Pollutants/metabolism , Environmental Restoration and Remediation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...