Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 274(Pt 1): 133398, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38917925

ABSTRACT

Sodium alginate (SA) is widely used in the food, biomedical, and chemical industries due to its biocompatibility, biodegradability, and excellent film-forming properties. This article introduces a simple method for preparing uniform alginate-based packaging materials with exceptional properties for fruit preservation. The alginate was uniformly crosslinked by gradually releasing calcium ions triggered by the sustained hydrolysis of gluconolactone (GDL). A cinnamaldehyde (CA) emulsion, stabilized by xanthan without the use of traditional surfactants, was tightly incorporated into the alginate film to enhance its antimicrobial, antioxidant, and UV shielding properties. The alginate-based film effectively blocked ultraviolet rays in the range of 400-200 nm, while allowing for a visible light transmittance of up to 70 %. Additionally, it showed an increased water contact angle and decreased water vapor permeability. The alginate-based film was also employed in the preparation of coated paper through the commonly used coating process in the papermaking industry. The alginate-based material displayed excellent antioxidant properties and antimicrobial activity against Escherichia coli, Staphylococcus aureus and Botrytis cinerea, successfully extending the shelf life of strawberries to 7 days at room temperature. This low-cost and facile method has the potential to drive advancements in the food and biomedical fields by tightly incorporating active oil onto a wide range of biomacromolecule substrates.

2.
Int J Biol Macromol ; 274(Pt 2): 133431, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936573

ABSTRACT

High internal phase Pickering emulsions (HIPEs) constitute a significant research domain within colloid interface chemistry, addressing the demand for robust emulsion systems across various applications. An innovative nanoparticle, synthesized from a cyclodextrin metal-organic framework encapsulated with a composite of resveratrol and soy isolate protein (RCS), was employed to fortify a high internal phase emulsion. The emulsion's three-dimensional printing capabilities, alongside the encapsulated delivery efficacy for ß-carotene, were thoroughly examined. Cyclodextrin metal-organic frameworks (CD-MOFs), facilitated by cellulose nanofibrils, were synthesized to yield particles at the nanoscale, maintaining a remarkable 97.67 % cellular viability at an elevated concentration of 1000 µg/ml. The RCS nanoparticles demonstrated thermal stability and antioxidant capacities surpassing those of CD-MOF. The integration of soybean isolate protein augmented both the hydrophobicity (from 21.95 ± 0.64° to 59.15 ± 0.78°) and the interfacial tension (from 14.36 ± 0.46 mN/m to 5.34 ± 0.81 mN/m) of the CD-MOF encapsulated with resveratrol, thereby enhancing the RCS nanoparticles' adsorption at the oil-water interface with greater stability. The durability of the RCS-stabilized high internal phase emulsions was contingent upon the RCS concentration. Emulsions stabilized with 5 wt%-RCS exhibited optimal physical and chemical robustness, demonstrating superior performance in emulsion 3D printing and ß-carotene encapsulation delivery. This investigation furnishes a novel perspective on the amalgamation of food customization and precision nutrition.

3.
Int J Biol Macromol ; 271(Pt 1): 132494, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788874

ABSTRACT

The synthesis of liquid metal-infused hydrogels, typically constituted by polyacrylamide networks crosslinked through covalent bonds, often encounters a conundrum: they exhibit restricted extensibility and a diminished capacity for self-repair, owing to the inherently irreversible nature of the covalent linkages. This study introduces a hydrophobically associated hydrogel embedding gallium (Ga)-droplets, realized through the in situ free radical copolymerization of hydrophobic hexadecyl methacrylate (HMA) and hydrophilic acrylamide (AM) in a milieu containing xanthan gum (XG) and PEDOT:PSS, which co-stabilizes the Ga-droplets. The Ga-droplets, synergistically functioning as conductive agents alongside PEDOT:PSS, also expedite the hydrogel's formation. The resultant XG/PEDOT:PSS-Ga-P(AM-HMA) hydrogel is distinguished by its remarkable extensibility (2950 %), exceptional toughness (3.28 MJ/m3), superior adherence to hydrophobic, smooth substrates, and an innate ability for hydrophobic-driven self-healing. As a strain sensing medium, this hydrogel-based sensor exhibits heightened sensitivity (gauge factor = 12.66), low detection threshold (0.1 %), and robust durability (>500 cycles). Furthermore, the inclusion of glycerol endows the XG/PEDOT:PSS-Ga-P(AM-HMA) hydrogel with anti-freezing properties without compromising its mechanical integrity and sensing acumen. This sensor adeptly captures a spectrum of human movements, from the nuanced radial pulse to extensive joint articulations. This research heralds a novel approach for fabricating multifaceted PAM-based hydrogels with toughness and superior sensing capabilities.


Subject(s)
Hydrogels , Hydrophobic and Hydrophilic Interactions , Polymers , Polysaccharides, Bacterial , Hydrogels/chemistry , Polysaccharides, Bacterial/chemistry , Polymers/chemistry , Polystyrenes/chemistry , Gallium/chemistry , Metals/chemistry , Bridged Bicyclo Compounds, Heterocyclic
4.
Int J Biol Macromol ; 272(Pt 2): 132448, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821302

ABSTRACT

Peripheral nerve injury often leads to symptoms of motor and sensory impairment, and slow recovery of nerves after injury and limited treatment methods will aggravate symptoms or even lead to lifelong disability. Curcumin can promote peripheral nerve regeneration, but how to accurately deliver the appropriate concentration of curcumin in the local peripheral nerve remains to be solved. In this study, we designed a human hair keratin/chitosan (C/K) hydrogel with sodium tripolyphosphate ions crosslinked to deliver curcumin topically. Chitosan improves the mechanical properties of hydrogels and keratin improves the biocompatibility of hydrogels. C/K hydrogel showed good cytocompatibility, histocompatibility and degradability. In vitro experiments showed that hydrogels can continuously release curcumin for up to 10 days. In addition, a comprehensive analysis of behavioral, electrophysiological, histology, and target organ recovery results in animal experiments showed that locally delivered curcumin can enhance nerve regeneration in addition to hydrogels. In short, we provide a new method that combines the advantages of human hair keratin, chitosan, and curcumin for nerve damage repair.


Subject(s)
Chitosan , Curcumin , Hydrogels , Keratins , Nerve Regeneration , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/administration & dosage , Chitosan/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Nerve Regeneration/drug effects , Animals , Humans , Keratins/chemistry , Keratins/pharmacology , Rats , Peripheral Nerve Injuries/drug therapy , Mice
5.
Int J Biol Macromol ; 266(Pt 2): 131129, 2024 May.
Article in English | MEDLINE | ID: mdl-38574640

ABSTRACT

In this study, we propose a non - toxic and low-cost fabrication of cellulose-based eutectogel through the ZnCl2/H2O/H3PO4 deep eutectic solvent (DES) to dissolve cellulose followed by free-radical polymerization of acrylamide. Particularly, the introduction of cellulose enhances the mechanical properties of eutectogels while eliminating the environmental concerns of the traditional nanocellulose fabrication process. Owing to the dynamic transfer of ions in the eutectogel network, the prepared eutectogels exhibit adjustable conductivity (0.9- 1.37 Sm-1, 15 °C) and stretching sensitivity (Gauge factor = 5.4). The resulting DES - cellulose-based eutectogels (DCEs) exhibited ultra stretchability (4086 %), high toughness (261.3 MJ/m3), excellent ionic conductivity (1.64 Sm-1, 20 °C), high transparency (>85 %), outstanding antifreezing performance (<-80 °C), and other comprehensive characteristics. The DCEs had been proven to have multiple sensitivities to external stimuli, like temperature, strain, and pressure. As a result, the DCEs can be assembled into multifunctional sensors. Moreover, this work also demonstrated the satisfactory performance of DCEs in flexible electroluminescent devices. The low cost and high efficiency made the preparation method of this experiment an efficient strategy for developing high-performance cellulose-based eutectogels, which would greatly promote the application of such materials in areas such as artificial skin for soft robots and other wearable devices.


Subject(s)
Cellulose , Electric Conductivity , Cellulose/chemistry , Gels/chemistry , Freezing , Wearable Electronic Devices
6.
J Hazard Mater ; 469: 134063, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38508112

ABSTRACT

Sulfadiazine (SDZ), a widely used effective antibiotic, is resistant to conventional biological treatment, which is concerning since untreated SDZ discharge can pose a significant environmental risk. Electro-Fenton (EF) technology is a promising advanced oxidation technology for efficiently removing SDZ. However, due to the limitations of traditional experimental methods, there is a lack of in-depth study on the mechanism of ·OH-dominated SDZ degradation in EF process. In this study, an EF system was established for SDZ degradation and the transformation products (TPs) were detected by mass spectrometry. Dynamic thermodynamic, kinetic and wave function analysis of reactants, transition states and intermediates were proposed by density functional theory calculations, which was applied to elucidate the underlying mechanism of SDZ degradation. Experimental results showed that amino, benzene, and pyrimidine sites in SDZ were oxidized by ·OH, producing TPs through hydrogen abstraction and addition reactions. ·OH was kinetically more likely to attack SDZ- than SDZ. Fe(IV) dominated the single-electron transfer oxidation reaction of SDZ, and the formed organic radicals can spontaneously generate the de-SO2 product via Smiles rearrangement. Toxicity experiments showed the toxicity of SDZ and TPs can be greatly reduced. The results of this study promote the understanding of SDZ degradation mechanism in-depth. ENVIRONMENTAL IMPLICATION: Sulfadiazine (SDZ) is one of the antibiotics widely used around the world. However, it has posed a significant environmental risk due to its overuse and cannot be efficiently removed by traditional treatment methods. The lack of in-depth study on SDZ degradation mechanism under reactive species limits the improvement of SDZ degradation efficiency. Therefore, this work focused on SDZ degradation mechanism in-depth under electro-Fenton system through reactive species investigation, mass spectrometry analysis, and theoretical calculation. The results in this study can provide a theoretical basis for improving the SDZ degradation efficiency which will contribute to solving SDZ pollution problems.


Subject(s)
Sulfadiazine , Water Pollutants, Chemical , Sulfadiazine/chemistry , Anti-Bacterial Agents/chemistry , Oxidation-Reduction , Mass Spectrometry , Water Pollutants, Chemical/chemistry
7.
Nat Commun ; 15(1): 1179, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332017

ABSTRACT

The active-cooling elastomer concept, originating from vascular thermoregulation for soft biological tissue, is expected to develop an effective heat dissipation method for human skin, flexible electronics, and soft robots due to the desired interface mechanical compliance. However, its low thermal conduction and poor adaptation limit its cooling effects. Inspired by the bone structure, this work reports a simple yet versatile method of fabricating arbitrary-geometry liquid metal skeleton-based elastomer with bicontinuous Gyroid-shaped phases, exhibiting high thermal conductivity (up to 27.1 W/mK) and stretchability (strain limit >600%). Enlightened by the vasodilation principle for blood flow regulation, we also establish a hydraulic-driven conformal morphing strategy for better thermoregulation by modulating the hydraulic pressure of channels to adapt the complicated shape with large surface roughness (even a concave body). The liquid metal active-cooling elastomer, integrated with the flexible thermoelectric device, is demonstrated with various applications in the soft gripper, thermal-energy harvesting, and head thermoregulation.

8.
Front Pharmacol ; 15: 1336310, 2024.
Article in English | MEDLINE | ID: mdl-38389922

ABSTRACT

CD10, a zinc-dependent metalloprotease found on the cell surface, plays a pivotal role in an array of physiological and pathological processes including cardiovascular regulation, immune function, fetal development, pain response, oncogenesis, and aging. Recognized as a biomarker for hematopoietic and tissue stem cells, CD10 has garnered attention for its prognostic potential in the progression of leukemia and various solid tumors. Recent studies underscore its regulatory significance and therapeutic promise in combating Alzheimer's disease (AD), and it is noted for its protective role in preventing heart failure (HF), obesity, and type-2 diabetes. Furthermore, CD10/substance P interaction has also been shown to contribute to the pain signaling regulation and immunomodulation in diseases such as complex regional pain syndrome (CRPS) and osteoarthritis (OA). The emergence of COVID-19 has sparked interest in CD10's involvement in the disease's pathogenesis. Given its association with multiple disease states, CD10 is a prime therapeutic target; inhibitors targeting CD10 are now being advanced as therapeutic agents. This review compiles recent and earlier literature on CD10, elucidating its physicochemical attributes, tissue-specific expression, and molecular functions. Furthermore, it details the association of CD10 with various diseases and the clinical advancements of its inhibitors, providing a comprehensive overview of its growing significance in medical research.

9.
Int J Biol Macromol ; 260(Pt 1): 129272, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38211925

ABSTRACT

Conductive hydrogels, especially polysaccharide-based ionic conductive hydrogels, have received increasing interest in the field of wearable sensors due to their similarity to human skin. Nevertheless, it is still a challenging task to simultaneously prepare a self-healed and adhesive conductive hydrogel with good toughness, temperature tolerance and high sensing performance, especially with high sensitivity and a low detection limit. Herein, we developed a new strategy to improve the toughness and sensing performance of a multifunctional conductive hydrogel by simultaneously using dissolved chitosan (CS) and solid chitosan nanofibers (CSFs) to induce the formation of hierarchical polymeric networks in the hydrogel. The tensile strength and elongation at break of the hydrogel could be improved from 70.3 kPa and 1005 % to 173.9 kPa and 1477 %, respectively, simply by introducing CSFs to the hydrogel, and its self-healing, adhesive and antibacterial properties were effectively retained. When serving as a resistive sensing material, the introduction of CSFs increased the gauge factor of the hydrogel-based strain sensor from 8.25 to 14.27. Moreover, the hydrogel-based strain sensor showed an ultralow detection limit of 0.2 %, excellent durability and stability (1000 cycles) and could be used to detect various human activities. In addition, the hydrogel prepared by using a water-glycerol binary solvent system showed temperature-tolerant performance and possessed adequate sensitivity when serving as a resistive sensing material. Therefore, this work provides a new way to prepare multifunctional conductive hydrogels with good toughness, sensing performance and temperature tolerance to expand the application range of hydrogel-based strain sensors.


Subject(s)
Chitosan , Nanofibers , Smart Materials , Humans , Hydrogels , Anti-Bacterial Agents , Electric Conductivity , Ions
10.
Int J Oncol ; 64(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38214398

ABSTRACT

Subsequently to the publication of the above article, an interested reader drew to the authors' attention what appeared to be a factual error associated with the reported primer sequences for the p21 promoter. The authors have re­examined their paper carefully, and wish to make the following textual corrections in light of the query raised by the reader. The first errors were located on p. 1033 and 1034, in the Abstract and Introduction sections. First, for the sentence beginning on line 15 of the Abstract on p. 1033, the text should be corrected to: "UCA1 silencing in LCC2 and LCC9 cells increased tamoxifen drug sensitivity by promoting cell apoptosis and arresting the cell cycle at the G2/M phase," replacing "LLC2 and LLC9 cells" with "LCC2 and LCC9 cells." Secondly, in the last paragraph of the Introduction on p. 1034, the second sentence should be corrected to: "Induction of UCA1 overexpression in MCF­7 and T47D breast cancer cells and silencing of UCA1 in LCC2 and LCC9 breast cancer cells were performed to assess the drug sensitivity of the cells to tamoxifen.", replacing "LLC2 and LLC9 cells" with "LCC2 and LCC9 cells." The next errors were located on p. 1035, in the Materials and methods section. The primer sequences of the p21 promoter were incorrectly listed as: "Forward (40), 5'­AGACCATGTGGACCTGTCACTG­3', and reverse, 5'­GTTTGGAGTGGTAGAAATCTGTC­3'". In fact, this primer was designed for detecting the mRNA expression of p21, and it was inadvertently pasted into the text during the editing process. This text should be corrected to: "The primer sequences of the p21 promoter were as follows: Forward (40), 5'­GAGGCAAAAGTCCTGTGTTCCAACT­3', and reverse, 5'­AAGAAATCCCTGTGGTTGCAGCAGCT­3'." In addition, reference 40 should have been cited as follows: Itahana Y, Zhang J, Göke J, Vardy LA, Han R, Iwamoto K, Cukuroglu E, Robson P, Pouladi MA, Colman A and Itahana K: Histone modifications and p53 binding poise the p21 promoter for activation in human embryonic stem cells. Sci Rep 6: 28112, 2016. The final error is also located on p 1035, in the Materials and methods section, where the supplier of anti­GAPDH antibodies was incorrectly stated as AbMart Bio­tech Co. Ltd., Shanghai, China. This should be corrected to "Abcam". Although these errors were the results of oversights made during the writing and editing process, they do not affect the accuracy of the study's results or the readers' comprehension of the paper. All the authors agree with the publication of this corrigendum, and are grateful to the Editor of International Journal of Oncology for granting them the opportunity to publish this; furthermore, they apologize to the readership for any inconvenience caused. [International Journal of Oncology 54: 1033­1042, 2019; DOI: 10.3892/ijo.2019.4679].

11.
Int J Biol Macromol ; 259(Pt 1): 129225, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184053

ABSTRACT

Liquid metal (LM) microdroplets have garnered significant interest as conductive materials for initiating free radical polymerization in the development of conductive hydrogels suited for strain sensors. However, crafting multi-functional conductive hydrogels that boast both high stretchability and superior sensing capabilities remains as a challenge. In this study, we have successfully synthesized LM-based conductive hydrogels characterized by remarkable stretchability and sensing performance employing acrylic acid (AA) to evenly distribute chitosan nanofibers (CSFs) and to subsequently catalyze the free radical polymerization of AA. The resultant polymer network was crosslinked within situ polyacrylic acid (PAA), facilitated by Ga3+ in conjunction with guar gum (GG)-stabilized Ga droplets. The strategic interplay between the rigid, and protonated CSFs and the pliable PAA matrix, coupled with the ionic crosslinking of Ga3+, endows the resulting GG-Ga-CSF-PAA hydrogel with high stretchability (3700 %), ultrafast self-healing, robust moldability, and strong adhesiveness. When deployed as a strain sensing material, this hydrogel exhibits a high gauge factor (38.8), a minimal detection threshold, enduring durability, and a broad operational range. This versatility enables the hydrogel-based strain sensor to monitor a wide spectrum of human motions. Remarkably, the hydrogel maintains its stretchability and sensing efficacy under extreme temperatures after a simple glycerol solution treatment.


Subject(s)
Acrylates , Chitosan , Nanofibers , Humans , Hydrogels , Electric Conductivity , Free Radicals
12.
Int J Biol Macromol ; 257(Pt 1): 128434, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38043655

ABSTRACT

Ion conductors offer great potential for diverse electric applications. However, most of the ion conductors were fabricated from non - degradable petroleum-based polymers with non or low biodegradability, which inevitably leads to resource depletion and waste accumulation. Fabricating ion conductors based on renewable, and sustainable materials is highly desirable and valuable. Herein, a series of eutectogels were designed through dual-dynamic-bond cross-linking among ferric iron (Fe3+), protocatechualdehyde (PA), and chitosan (CS) in 1 - allyl-3 - methylimidazole chloride ionic liquid/urea (AmimCl/urea) eutectic-based ionic liquid. Due to the presence of AmimCl/urea eutectic-based ionic liquid, the obtained CS - PA@Fe eutectogels showed excellent ionic conductivity, superior anti-freezing properties that could maintain flexibility and high electrical properties at -20 °C. Dual-dynamic-bond cross-linking of catechol-Fe coordinate and dynamic Schiff base bonds equip CS - PA@Fe eutectogels with excellent injectable, and self-healing abilities. Additionally, due to the presence of phenolic hydroxyl groups of PA, the obtained CS - PA@Fe eutectogels present good adhesiveness. Based on the CS - PA@Fe eutectogels, multifunctional flexible strain sensors with high sensitivity, stability, as well as rapid response speed at wide operating temperature ranges were successfully fabricated. Thus, this study offers a promising strategy for fabricating naturally occurring biopolymers based eutectogels, which show great potential as high-performance flexible strain sensors for next-generation wearable electronic devices.


Subject(s)
Benzaldehydes , Catechols , Chitosan , Ionic Liquids , Prunella , Sphingosine/analogs & derivatives , Adhesives , Resin Cements , Schiff Bases , Electric Conductivity , Urea , Hydrogels
13.
Int J Biol Macromol ; 254(Pt 3): 127958, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37951428

ABSTRACT

Flexible wearable devices are garnering significant interest, with conductive hydrogels emerging as a particularly notable category. While many of these hydrogels offer impressive conductivity, they often lack the innate ability to adhere autonomously to human skin. The ideal hydrogel should possess both superior adhesion properties and a wide responsive range. This study introduces a novel double-network conductive hydrogel, synthesized from lignosulfonate sodium and ionic liquid using a one-pot method. The gel's mechanical robustness (fracture elongation of ∼3500 % and tensile strength of ∼130 kPa) and exceptional conductivity sensing performance arise from the synergistic effects of electrostatic interactions, dynamic hydrogen bonding, and a three-dimensional network structure. Additionally, the phenolic hydroxyl and sulfonic groups from lignosulfonate sodium imbue the hydrogel with adhesive qualities, allowing it to easily bond with varied material surfaces. This hydrogel excels in human physiological signal detection and wireless monitoring, demonstrating a rapid response time (149 ms) and high sensitivity (a maximum gauge factor of 10.9 for strains between 400 and 600 %). Given these properties, the flexible, self-adhesive, and conductive hydrogel showcases immense promise for future applications in wearable devices and wireless transmission sensing.


Subject(s)
Ionic Liquids , Humans , Data Accuracy , Electric Conductivity , Hydrogels
14.
Carbohydr Polym ; 326: 121621, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38142077

ABSTRACT

Conductive hydrogels have received increasing attention in the field of wearable electronics, but they also face many challenges such as temperature tolerance, biocompatibility, and stability of mechanical properties. In this paper, a double network hydrogel of MXene/TEMPO bacterial cellulose (TOBC) system is proposed. Through solvent replacement, the hydrogel exhibits wide temperature tolerance (-20-60 °C) and stable mechanical properties. A large number of hydrogen bonds, MXene/TOBC dynamic three-dimensional network system, and micellar interactions endow the hydrogel with excellent mechanical properties (elongation at break ~2800 %, strength at break ~420 kPa) and self-healing ability. The introduction of tannic acid prevents the oxidation of MXene and the loss of electrical properties of the hydrogel. In addition, the sensor can also quickly (74 ms) and sensitive (gauge factor = 15.65) wirelessly monitor human motion, and the biocompatibility can well avoid the stimulation when it comes into contact with the human body. This series of research work reveals the fabrication of MXene-like flexible wearable electronic devices based on self-healing, good cell compatibility, high sensitivity, wide temperature tolerance and durability, which can be used in smart wearable, wireless monitoring, human-machine Interaction and other aspects show great application potential.


Subject(s)
Cellulose , Hydrogels , Humans , Electric Conductivity
15.
Polymers (Basel) ; 15(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38139921

ABSTRACT

The aim of the present study was to investigate highly efficient alkyl ketene dimer (AKD) emulsions to improve the hydrophobicity of cellulose paper. AKD emulsions stabilized by guar gel were obtained; the guar gel was prepared by hydrogen bond cross-linking sodium tetraborate and guar gum. The cross-linking was confirmed by combining FTIR and SEM. The effect of guar gel on the performance of the AKD emulsions was also studied by testing AKD emulsions stabilized by different guar gel concentrations. The results showed that with increasing guar gel concentration, the stability of the AKD emulsions improved, the droplet diameter decreased, and the hydrophobicity and water resistance of the sized packaging paper were gradually enhanced. Through SEM, the guar gel film covering the AKD emulsion droplet surface and the three-dimensional structure in the aqueous dispersion phase were assessed. This study constructed a scientific and efficient preparation method for AKD emulsions and provided a new method for the application of carbohydrate polymer gels which may avoid the adverse effect of surfactant on paper sizing and environmental problems caused by surfactant bioaccumulation.

16.
ACS Appl Mater Interfaces ; 15(41): 48462-48474, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37812139

ABSTRACT

Electronic conductive hydrogels have prompted immense research interest as flexible sensing materials. However, establishing a continuous electronic conductive network within a hydrogel is still highly challenging. Herein, we develop a new strategy to establish a continuous corrugated carbon network within a hydrogel by embedding carbonized crepe paper into the hydrogel with its corrugations perpendicular to the stretching direction using a casting technique. The corrugated carbon network within the as-prepared composite hydrogel serves as a rigid conductive network to simultaneously improve the tensile strength and conductivity of the composite hydrogel. The composite hydrogel also generates a crack structure when it is stretched, enabling the composite hydrogel to show ultrahigh sensitivity (gauge factor = 59.7 and 114 at strain ranges of 0-60 and 60-100%, respectively). The composite hydrogel also shows an ultralow detection limit of 0.1%, an ultrafast response/recovery time of 75/95 ms, and good stability and durability (5000 cycles at 10% strain) when used as a resistive strain sensing material. Moreover, the good stretchability, adhesiveness, and self-healing ability of the hydrogel were also effectively retained after the corrugated carbon network was introduced into the hydrogel. Because of its outstanding sensing performance, the composite hydrogel has potential applications in sensing various human activities, including accurately recording subtle variations in wrist pulse waves and small-/large-scale complex human activities. Our work provides a new approach to develop economical, environmentally friendly, and reliable electronic conductive hydrogels with ultrahigh sensing performance for the future development of electronic skin and wearable devices.

17.
ACS Omega ; 8(34): 31344-31352, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37663472

ABSTRACT

Surfactant-free emulsions are currently gaining increased interest due to their technofunctional, health-promoting, economic, biocompatible, and sustainable characteristics. Herein, we report an ultrastable, surfactant-free emulsion stabilized by the konjac glucomannan (KGM)-xanthan gum (XG) complex. The results suggested that KGM-XG tended to adsorb onto the oil/water interface, causing a reduction in interfacial tension. The emulsion droplets were less than 1 µm in diameter and had a narrow size distribution. Using laser confocal microscopy and cryo-SEM, it was observed that KGM-XG generated a compact film on the surface of emulsion droplets while simultaneously constructing a three-dimensional network in the continuous phase. Both of these factors contributed to the stability of the emulsion. The present study presents a straightforward approach for producing highly stable emulsions stabilized by polysaccharides. These emulsions can be effectively utilized to enhance the water resistance of cellulose paper, which is extensively employed in the packaging industry.

18.
Front Endocrinol (Lausanne) ; 14: 1133970, 2023.
Article in English | MEDLINE | ID: mdl-37455912

ABSTRACT

Diabetic kidney disease (DKD) is a common microangiopathy in diabetic patients and the main cause of death in diabetic patients. The main manifestations of DKD are proteinuria and decreased renal filtration capacity. The glomerular filtration rate and urinary albumin level are two of the most important hallmarks of the progression of DKD. The classical treatment of DKD is controlling blood glucose and blood pressure. However, the commonly used clinical therapeutic strategies and the existing biomarkers only partially slow the progression of DKD and roughly predict disease progression. Therefore, novel therapeutic methods, targets and biomarkers are urgently needed to meet clinical requirements. In recent years, increasing attention has been given to the role of epigenetic modification in the pathogenesis of DKD. Epigenetic variation mainly includes DNA methylation, histone modification and changes in the noncoding RNA expression profile, which are deeply involved in DKD-related inflammation, oxidative stress, hemodynamics, and the activation of abnormal signaling pathways. Since DKD is reversible at certain disease stages, it is valuable to identify abnormal epigenetic modifications as early diagnosis and treatment targets to prevent the progression of end-stage renal disease (ESRD). Because the current understanding of the epigenetic mechanism of DKD is not comprehensive, the purpose of this review is to summarize the role of epigenetic modification in the occurrence and development of DKD and evaluate the value of epigenetic therapies in DKD.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Kidney Failure, Chronic , Humans , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Kidney Failure, Chronic/genetics , Epigenesis, Genetic , Glomerular Filtration Rate , Biomarkers/metabolism , Diabetes Mellitus/genetics
19.
Int J Biol Macromol ; 242(Pt 3): 124942, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37210059

ABSTRACT

Pickering emulsions represent a promising avenue in the field of controlled drug delivery systems. Recently, cellulose nanofibers (CNFs) and chitosan nanofibers (ChNFs) have gained interest as eco-friendly stabilizers for Pickering emulsions, yet their application in pH-responsive drug delivery systems remains unexplored. However, the potential of these biopolymer complexes in formulating stable, pH-responsive emulsions for controlled drug release is of significant interest. Here, we show the development of a highly stable, pH-responsive fish oil-in-water Pickering emulsion stabilized by ChNF/CNF complexes, with optimal stability achieved at a 0.2 wt% ChNF concentration and an average emulsion particle size of approximately 4 µm. Our results demonstrate long-term stability (16 days of storage) for ChNF/CNF-stabilized emulsions, with the interfacial membrane's pH modulation facilitating controlled, sustained ibuprofen (IBU) release. Furthermore, we observed a remarkable release of approximately 95 % of the embedded IBU within the pH range of 5-9, while the drug loading and encapsulation efficiency of the drug-loaded microspheres reached their peak at a 1 % IBU dosage, with values of 1 % and 87 %, respectively. This study highlights the potential of using ChNF/CNF complexes in designing versatile, stable, and entirely renewable Pickering systems for controlled drug delivery, with potential applications in food and eco-friendly products.


Subject(s)
Cellulose , Ibuprofen , Cellulose/chemistry , Emulsions/chemistry , Water/chemistry , Hydrogen-Ion Concentration , Particle Size
20.
Front Endocrinol (Lausanne) ; 14: 1135530, 2023.
Article in English | MEDLINE | ID: mdl-37143724

ABSTRACT

Diabetic nephropathy (DN) is the most common microvascular complication in diabetes and one of the leading causes of end-stage renal disease. The standard treatments for patients with classic DN focus on blood glucose and blood pressure control, but these treatments can only slow the progression of DN instead of stopping or reversing the disease. In recent years, new drugs targeting the pathological mechanisms of DN (e.g., blocking oxidative stress or inflammation) have emerged, and new therapeutic strategies targeting pathological mechanisms are gaining increasing attention. A growing number of epidemiological and clinical studies suggest that sex hormones play an important role in the onset and progression of DN. Testosterone is the main sex hormone in males and is thought to accelerate the occurrence and progression of DN. Estrogen is the main sex hormone in females and is thought to have renoprotective effects. However, the underlying molecular mechanism by which sex hormones regulate DN has not been fully elucidated and summarized. This review aims to summarize the correlation between sex hormones and DN and evaluate the value of hormonotherapy in DN.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Kidney Failure, Chronic , Male , Female , Humans , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/etiology , Diabetic Nephropathies/pathology , Testosterone/therapeutic use , Estrogens/therapeutic use , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...