Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39037874

ABSTRACT

Motor imagery refers to the brain's response during the mental simulation of physical activities, which can be detected through electroencephalogram (EEG) signals. However, EEG signals exhibit a low signal-to-noise ratio (SNR) due to various artifacts originating from other physiological sources. To enhance the classification performance of motor imagery tasks by increasing the SNR of EEG signals, several signal decomposition approaches have been proposed. Empirical mode decomposition (EMD) has shown promising results in extracting EEG components associated with motor imagery tasks more effectively than traditional linear decomposition algorithms such as Fourier and wavelet methods. Nevertheless, the EMD-based algorithm suffers from a significant challenge known as mode mixing, where frequency components intertwine with the intrinsic mode functions obtained through EMD. This issue severely hampers the accuracy of motor imagery classification. Despite numerous algorithms proposed, mode mixing remains a persistent issue. In this paper, we propose the Deep-EMD algorithm, a deep neural network-based approach to mode mixing problem. We employ two datasets to compare the motor imagery classification and mode mixing improvement achieved by the conventional EMD algorithm. Our experimental results demonstrate that the Deep-EMD algorithm effectively mitigates the mode mixing problem in decomposed EEG components, leading to improved motor imagery classification performance.

2.
Sensors (Basel) ; 23(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36772269

ABSTRACT

In this study, the optimal features of electrocardiogram (ECG) signals were investigated for the implementation of a personal authentication system using a reinforcement learning (RL) algorithm. ECG signals were recorded from 11 subjects for 6 days. Consecutive 5-day datasets (from the 1st to the 5th day) were trained, and the 6th dataset was tested. To search for the optimal features of ECG for the authentication problem, RL was utilized as an optimizer, and its internal model was designed based on deep learning structures. In addition, the deep learning architecture in RL was automatically constructed based on an optimization approach called Bayesian optimization hyperband. The experimental results demonstrate that the feature selection process is essential to improve the authentication performance with fewer features to implement an efficient system in terms of computation power and energy consumption for a wearable device intended to be used as an authentication system. Support vector machines in conjunction with the optimized RL algorithm yielded accuracy outcomes using fewer features that were approximately 5%, 3.6%, and 2.6% higher than those associated with information gain (IG), ReliefF, and pure reinforcement learning structures, respectively. Additionally, the optimized RL yielded mostly lower equal error rate (EER) values than the other feature selection algorithms, with fewer selected features.


Subject(s)
Algorithms , Wearable Electronic Devices , Humans , Bayes Theorem , Intelligence , Electrocardiography/methods
3.
Sensors (Basel) ; 21(24)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34960304

ABSTRACT

In this study, we analyze the effect of a recliner chair with rocking motions on sleep quality of naps using automated sleep scoring and spindle detection models. The quality of sleep corresponding to the two rocking motions was measured quantitatively and qualitatively. For the quantitative evaluation, we conducted a sleep parameter analysis based on the results of the estimated sleep stages obtained on the brainwave and spindle estimation, and a sleep survey assessment from the participants was analyzed for the qualitative evaluation. The analysis showed that sleep in the recliner chair with rocking motions positively increased the duration of the spindles and deep sleep stage, resulting in improved sleep quality.


Subject(s)
Sleep Quality , Sleep Stages , Electroencephalography , Humans , Motion , Sleep
4.
Sensors (Basel) ; 20(18)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957531

ABSTRACT

Several studies, wherein the structure or rigidity of a mattress was varied, have been conducted to improve sleep quality. These studies investigated the effect of variation in the surface characteristics of mattresses on sleep quality. The present study developed a mattress whose rigidity can be varied by controlling the amount of air in its air cells. To investigate the effect of the variable rigidity of the air mattress on sleep quality, participants (Male, Age: 23.9 ± 2.74, BMI: 23.3 ± 1.60) were instructed to sleep on the air mattress under different conditions, and their sleep quality was subjectively and objectively investigated. Subjectively, sleep quality is assessed based on the participants' evaluations of the depth and length of their sleep. Objectively, sleep is estimated using the sleep stage information obtained by analysing the movements and brain waves of the participants during their sleep. A subjective assessment of the sleep quality demonstrates that the participants' sleep was worse with the adjustment of the air mattress than that without; however, the objective sleep quality results demonstrates an improvement in the sleep quality when the rigidity of the air mattress is varied based on the participant's preference. This paper proposes a design for mattresses that can result in more efficient sleep than that provided by traditional mattresses.


Subject(s)
Beds , Sleep , Adult , Humans , Male , Movement , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL