Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Med (Lausanne) ; 11: 1334062, 2024.
Article in English | MEDLINE | ID: mdl-38384418

ABSTRACT

Objective: High-grade serous ovarian cancer (HGSOC) has the highest mortality rate among female reproductive system tumors. Accurate preoperative assessment is crucial for treatment planning. This study aims to develop multitask prediction models for HGSOC using radiomics analysis based on preoperative CT images. Methods: This study enrolled 112 patients diagnosed with HGSOC. Laboratory findings, including serum levels of CA125, HE-4, and NLR, were collected. Radiomic features were extracted from manually delineated ROI on CT images by two radiologists. Classification models were developed using selected optimal feature sets to predict R0 resection, lymph node invasion, and distant metastasis status. Model evaluation was conducted by quantifying receiver operating curves (ROC), calculating the area under the curve (AUC), De Long's test. Results: The radiomics models applied to CT images demonstrated superior performance in the testing set compared to the clinical models. The area under the curve (AUC) values for the combined model in predicting R0 resection were 0.913 and 0.881 in the training and testing datasets, respectively. De Long's test indicated significant differences between the combined and clinical models in the testing set (p = 0.003). For predicting lymph node invasion, the AUCs of the combined model were 0.868 and 0.800 in the training and testing datasets, respectively. The results also revealed significant differences between the combined and clinical models in the testing set (p = 0.002). The combined model for predicting distant metastasis achieved AUCs of 0.872 and 0.796 in the training and test datasets, respectively. The combined model displayed excellent agreement between observed and predicted results in predicting R0 resection, while the radiomics model demonstrated better calibration than both the clinical model and combined model in predicting lymph node invasion and distant metastasis. The decision curve analysis (DCA) for predicting R0 resection favored the combined model over both the clinical and radiomics models, whereas for predicting lymph node invasion and distant metastasis, DCA favored the radiomics model over both the clinical model and combined model. Conclusion: The identified radiomics signature holds potential value in preoperatively evaluating the R0, lymph node invasion and distant metastasis in patients with HGSC. The radiomics nomogram demonstrated the incremental value of clinical predictors for surgical outcome and metastasis estimation.

2.
Appl Microbiol Biotechnol ; 106(5-6): 1967-1977, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35243528

ABSTRACT

Nanobodies show a great potential in biomedical and biotechnology applications. Bacterial expression is the most widely used expression system for nanobody production. However, the yield of nanobodies is relatively low compared to that of eukaryotic systems. In this study, the repetitive amino acid sequence motifs (GAGAGS) found in silk fibroin protein (SFP) were developed as a novel fusion tag (SF-tag) to enhance the expression of nanobodies in Escherichia coli. SF-tags of 1 to 5 hexapeptide units were fused to the C-terminus of 4G8, a nanobody against human epididymis protein 4 (HE4). The protein yield of 4G8 variants was increased by the extension of hexapeptide units and achieved a 2.5 ~ 7.1-fold increase compared with that of untagged 4G8 (protein yield of 4G8-5C = 0.307 mg/g vs that of untagged 4G8 = 0.043 mg/g). Moreover, the fusion of SF-tags not only had no significant effect on the affinity of 4G8, but also showed a slight increase in the thermal stability of SF-tag-fused 4G8 variants. The fusion of SF-tags increased the transcription of 4G8 by 2.3 ~ 7.0-fold, indicating SF-tags enhanced the protein expression at the transcriptional level. To verify the applicability of the SF-tags for other nanobody expression, we further investigated the protein expression of two other anti-HE4 nanobodies 1G8 and 3A3 upon fusion with the SF-tags. Results indicated that the SF-tags enhanced the protein expression up to 5.2-fold and 5.7-fold for 1G8 and 3A3, respectively. For the first time, this study reported a novel and versatile fusion tag system based on the SFP for improving nanobody expression in Escherichia coli, which may enhance its potential for wider applications.Key points• A silk fibroin protein-based fusion tag (SF-tag) was developed to enhance the expression of nanobodies in Escherichia coli.• The SF-tag enhanced the nanobody expression at the transcriptional level.• The fusion of SF-tag had no significant effect on the affinity of nanobodies and could slightly increase the thermal stability of nanobodies.


Subject(s)
Fibroins , Single-Domain Antibodies , Biotechnology , Escherichia coli/genetics , Escherichia coli/metabolism , Fibroins/genetics , Humans , Protein Processing, Post-Translational , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Single-Domain Antibodies/chemistry
3.
Int J Biol Macromol ; 199: 298-306, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35016970

ABSTRACT

Human epididymis protein 4 (HE4) is a glycoprotein secreted by epithelial ovarian cancer (EOC) cells and is a novel and specific biomarker for diagnosing and prognosing EOC. Previous studies have shown that overexpression of HE4 is correlated with EOC tumorigenesis and chemoresistance. However, less has been reported regarding the direct effect of the secreted HE4 protein as an autocrine factor in EOC cells. Here, we investigated the molecular mechanism of the secretory form of HE4 on the growth of EOC cells by applying nanobodies with a targeted interaction of free HE4. Three anti-HE4 nanobodies were selected from an immune library by phage display. HE4 secreted by serum-free cultured OVCAR3 cells increased and was effectively neutralized by anti-HE4 nanobodies, which inhibited cell viability. Treatment with the anti-HE4 nanobody 1G8 decreased Bcl-2 expression and increased BAX, cleaved PARP, and p53 levels, resulting in apoptosis of OVCAR3 cells. Moreover, 1G8 significantly improved the cisplatin response of OVCAR3 cells. Our data suggest that secretory HE4 played a novel pro-survival autocrine role and was a target of the anti-HE4 nanobody to improve the therapeutic effects of cisplatin-based chemotherapy.


Subject(s)
Neoplasms, Glandular and Epithelial , Ovarian Neoplasms , Single-Domain Antibodies , Apoptosis , Biomarkers, Tumor/therapeutic use , Carcinoma, Ovarian Epithelial/drug therapy , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Female , Humans , Neoplasms, Glandular and Epithelial/drug therapy , Ovarian Neoplasms/metabolism , Single-Domain Antibodies/pharmacology
4.
J Neural Eng ; 18(4)2021 06 09.
Article in English | MEDLINE | ID: mdl-34038871

ABSTRACT

Objective.Many electroencephalogram (EEG)-based brain-computer interface (BCI) systems use a large amount of channels for higher performance, which is time-consuming to set up and inconvenient for practical applications. Finding an optimal subset of channels without compromising the performance is a necessary and challenging task.Approach.In this article, we proposed a cross-correlation based discriminant criterion (XCDC) which assesses the importance of a channel for discriminating the mental states of different motor imagery (MI) tasks. Channels are ranked and selected according to the proposed criterion. The efficacy of XCDC is evaluated on two MI EEG datasets.Main results.On the two datasets, the proposed method reduces the channel number from 71 and 15 to under 18 and 11 respectively without compromising the classification accuracy on unseen data. Under the same constraint of accuracy, the proposed method requires fewer channels than existing channel selection methods based on Pearson's correlation coefficient and common spatial pattern. Visualization of XCDC shows consistent results with neurophysiological principles.Significance.This work proposes a quantitative criterion for assessing and ranking the importance of EEG channels in MI tasks and provides a practical method for selecting the ranked channels in the calibration phase of MI BCI systems, which alleviates the computational complexity and configuration difficulty in the subsequent steps, leading to real-time and more convenient BCI systems.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Imagery, Psychotherapy , Imagination
5.
World J Microbiol Biotechnol ; 36(12): 176, 2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33103226

ABSTRACT

Nerve growth factor (NGF) is an essential trophic factor for the growth and survival of neurons in the central and peripheral nervous systems. For many years, mouse NGF (mNGF) has been used to treat various neuronal and non-neuronal disorders. However, the biological activity of human NGF (hNGF) is significantly higher than that of mNGF in human cells. Using the CRISPR/Cas9 system, we constructed the transgenic mice expressing hNGF specifically in their submandibular glands. As demonstrated by fluorescence immunohistochemical staining, these mice produced hNGF successfully, with 0.8 mg produced per gram of submandibular glands. hNGF with 99% purity was successfully extracted by two-step ion-exchange chromatography and one-step size-exclusion chromatography from the submandibular glands of these transgenic mice. Further, the purified hNGF was verified by LC-MS/MS. We analyzed the NH2-terminus of hNGF using both Edman degradation and LC-MS/MS-based methods. Both results showed that the obtained hNGF lost the NH2-terminal octapeptide (SSSHPIFH). Moreover, the produced hNGF demonstrated a strong promotion in the proliferation of TF1 cells.


Subject(s)
Gene Editing/methods , Nerve Growth Factor/isolation & purification , Nerve Growth Factor/metabolism , Submandibular Gland/metabolism , Animals , Cell Line , Cell Proliferation , Chromatography, Gel , Chromatography, Ion Exchange , Humans , Mice , Mice, Transgenic , Nerve Growth Factor/chemistry , Nerve Growth Factor/genetics , Protein Domains , Protein Engineering
6.
Anal Bioanal Chem ; 412(8): 1723-1728, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32030492

ABSTRACT

Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM-5) assays are employed in routine clinical settings to diagnose tumor. We selected two nanobodies with high-affinity to CEACAM-5, termed Nb11C12 and Nb2D5, using phage-display technology. The Nb2D5 fused with calf intestinal alkaline phosphatase (CAP), human placental alkaline phosphatase (HAP), or Pyrococcus abyssi alkaline phosphatase (PAP) were expressed in human embryonic kidney (HEK293) cells. The enzymatic activity of Nb2D5-HAP fusion protein was the best and remained stable at 60 °C for 7 days. The affinity of Nb2D5-HAP fusion protein to CEACAM-5 reached 42 pM. A chemiluminescent enzyme immunoassay (CLEIA) based on Nb2D5-HAP fusion protein was established for quantitative CEACAM-5 assay in clinical settings. The CLEIA exhibited a wide linear range of 0.31-640 ng/mL toward CEACAM-5, with a limit of detection (LOD) of 0.85 ng/mL. No cross-reactivity occurred with CEACAM-1, CEACAM-3, CEACAM-6, or CEACAM-8, and no interference was observed with rheumatoid factors. The CLEIA based on Nb2D5-HAP fusion protein was stable for 8 weeks at 37 °C and 50% relative humidity. The CLEIA developed from Nb2D5-HAP fusion protein had much better stability and linearity with similar reproducibility compared with the enzyme-linked immunosorbent assay developed from conventional monoclonal antibodies, which have been widely used in clinics over the past several decades. Graphical abstract.


Subject(s)
Alkaline Phosphatase/metabolism , Carcinoembryonic Antigen/metabolism , Immunoenzyme Techniques/methods , Recombinant Fusion Proteins/metabolism , Single-Domain Antibodies , Carcinoembryonic Antigen/immunology , GPI-Linked Proteins/immunology , HEK293 Cells , Humans , Limit of Detection , Luminescence , Reproducibility of Results
7.
Protein Expr Purif ; 155: 43-47, 2019 03.
Article in English | MEDLINE | ID: mdl-30414968

ABSTRACT

Nanobodies offer multiple advantages over conventional antibodies in terms of size, stability, solubility, immunogenicity, and production costs, with improved tumor uptake and blood clearance. Additionally, the recombinant expression of nanobodies is robust in various expression systems, such as Escherichia coli, Saccharomyces cerevisiae and Pichia pastoris. P. pastoris is the most widely used microorganism for nanobody production, but all or almost all expression vectors developed for this system are based on the regulated promoter of the alcohol oxidase 1 gene (AOX1) that requires methanol for full induction. In this study, a constitutive anti-CEACAM5 nanobody expression system was constructed under the control of a glyceraldehyde-3-phosphate dehydrogenase promoter (GAP) promoter. The effects of different carbon sources and pH on nanobody expression were evaluated in shaking flask cultures. After 96 h of constitutive expression in shaking flask, a yield of 51.71 mg/L was obtained. In addition, this constitutive expression system produced nanobodies at equivalent yield and affinity to that produced by methanol-induced expression. The results of this study indicated that the use of a constitutive expression system is a promising alternative for the production of nanobodies applied for cancer diagnosis and therapy.


Subject(s)
Genetic Vectors/genetics , Pichia/genetics , Single-Domain Antibodies/genetics , Animals , Batch Cell Culture Techniques , Camelids, New World , Carcinoembryonic Antigen/immunology , GPI-Linked Proteins/immunology , Gene Expression , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Humans , Promoter Regions, Genetic , Recombinant Proteins/genetics , Single-Domain Antibodies/immunology
8.
Mol Immunol ; 96: 37-47, 2018 04.
Article in English | MEDLINE | ID: mdl-29477934

ABSTRACT

Nanobodies represent the next-generation antibody-derived biologics with significant advances over conventional antibodies. Several rapid and robust techniques for isolating highly specific nanobodies have been developed. Antigen specific nanobodies are selected from constructed nanobody libraries, which can be classified into 3 main types: immune library, naïve library, and semisynthetic/synthetic library. The immune library is the most widely used strategy for nanobody screening. Target specific nanobodies are highly enriched in immune libraries than in non-immune libraries; however, it is largely limited by the natural antigenicity of antigens. The naïve library is thus developed. Despite the lack of somatic maturation, protein engineering can be employed to significantly increase the affinities of selected binders. However, a substantial amount of blood samples collected from a large number of individual animals is a prerequisite to ensure the diversity of the naïve library. With this issue considered, the semisynthetic/synthetic library may be a promising path toward obtaining a limitless source of nanobodies against a variety of antigens without the need of animals. In this review, we summarize the state-of-the-art screening technologies with different libraries. The approaches presented here can further boost the diverse applications of nanobodies in biomedicine and biotechnology.


Subject(s)
Single-Domain Antibodies , Animals , Humans , Peptide Library
9.
Mol Cell Biochem ; 360(1-2): 79-88, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21909996

ABSTRACT

Trichinella spiralis is a zoonotic nematode and food borne parasite and infection with T. spiralis leads to suppression of the host immune response and other immunopathologies. The excretory/secretory (ES) products of T. spiralis play important roles in the process of immunomodulation. However, the mechanisms and related molecules are unknown. Macrophages, a target for immunomodulation by the helminth parasite, play a critical role in initiating and modulating the host immune response to parasite infection. In this study, we examined the effect of ES products from different stages of T. spiralis on modulating J774A.1 macrophage activities. ES products from different stages of T. spiralis reduced the capacity of macrophages to express pro-inflammatory cytokines (tumor necrosis factor α, interleukin-1ß , interleukin-6 , and interleukin-12) in response to lipopolysaccharide (LPS) challenge. However, only ES products from 3-day-old adult worms and 5-day-old adult worms/new-born larvae significantly inhibited inducible nitric oxide synthase gene expression in LPS-induced macrophages. In addition, ES products alone boosted the expression of anti-inflammatory cytokines interleukin-10 and transforming growth factor-ß and effector molecule arginase 1 in J774A.1 macrophages. Signal transduction studies showed that ES products significantly inhibited nuclear factor-κB translocation into the nucleus and the phosphorylation of both extracellular signal-regulated protein kinase 1/2 and p38 mitogen-activated protein kinase in LPS-stimulated J774A.1 macrophages. These results suggest that ES products regulate host immune response at the macrophage level through inhibition of pro-inflammatory cytokines production and induction of macrophage toward the alternative phenotype, which maybe important for worm survival and host health.


Subject(s)
Culture Media, Conditioned/pharmacology , Cytokines/metabolism , Larva/metabolism , Macrophages/metabolism , Trichinella spiralis/metabolism , Active Transport, Cell Nucleus/drug effects , Animals , Cell Line , Cell Nucleus/metabolism , Cell Survival/drug effects , Cytokines/genetics , Gene Expression/drug effects , Gene Expression Regulation , Host-Parasite Interactions , Inflammation/chemically induced , Inflammation/metabolism , Lipopolysaccharides , Macrophages/drug effects , Macrophages/enzymology , Mice , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Phosphorylation , Rats , Rats, Wistar
10.
Article in Chinese | MEDLINE | ID: mdl-21970115

ABSTRACT

Macrophages not only initiate and modulate immune responses, but also are the final effector cells. Recent studies suggested that macrophages conventionally associated with IFN-gamma dominant Th1-type responses and also playing an essential role in the Th2-type inflammatory response, exhibit a quite different activation from the classically activated macrophages (CAM Phi) stimulated during Th1-type responses, therefore named as alternatively activated macrophages (AAM Phi). AAM Phi have multiple effects during helminth infection, including control of inflammatory reaction, contribution to fibrosis and repair at the site of injury, and anti-helminth effect. This article reviews recent findings regarding the role of AAM Phi in the development of disease and host protection following helminth infection.


Subject(s)
Helminthiasis/immunology , Macrophage Activation/immunology , Macrophages/immunology , Th2 Cells/immunology , Th1 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL