Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 231
Filter
1.
Adv Mater ; 36(26): e2401486, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38607186

ABSTRACT

Aqueous electrolytes and related aqueous rechargeable batteries own unique advantage on safety and environmental friendliness, but coupling high energy density Li-metal batteries with aqueous electrolyte still represent challenging and not yet reported. Here, this work makes a breakthrough in "high-voltage aqueous Li-metal batteries" (HVALMBs) by adopting a brilliant hybrid-electrolytes strategy. Concentrated ternary-salts ether-based electrolyte (CTE) acts as the anolyte to ensure the stability and reversibility of Li-metal plating/stripping. Eco-friendly water-in-salt (WiS) electrolyte acts as catholyte to support the healthy operation of high-voltage cathodes. Most importantly, the aqueous catholyte and non-aqueous anolyte are isolated in each independent chamber without any crosstalk. Aqueous catholyte permeation toward Li anode can be completely prohibited without proton-induced corrosion, which is enabled by the introduction of under-liquid dual super-lyophobic membrane-based separator, which can realize the segregation of the most effective immiscible electrolytes with a surface tension difference as small as 6 mJ m-2. As a result, the aqueous electrolyte can be successfully coupled with Li-metal anode and achieve the fabrication of HVALMBs (hybrid-electrolytes system), which presents long-term cycle stability with a capacity retention of 81.0% after 300 cycles (LiNi0.8Mn0.1Co0.1O2 || Li (limited) cell) and high energy density (682 Wh kg-1).

2.
Chem Sci ; 15(15): 5548-5554, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38638225

ABSTRACT

Al-rich (Si/Al = 4-6) Cu-SSZ-13 has been recognized as one of the potential catalysts to replace the commercial Cu-SSZ-13 (Si/Al = 10-12) towards ammonia-assisted selective catalytic reduction (NH3-SCR). However, poor hydrothermal stability is a great obstacle for Al-rich zeolites to meet the catalytic applications containing water vapor. Herein, we demonstrate that the hydrothermal stability of Al-rich Cu-SSZ-13 can be dramatically enhanced via Pr-ion modification. Particularly, after high-temperature hydrothermal aging (HTA), CuPr1.2-SSZ-13-HTA with an optimal Pr content of 1.2 wt% exhibits a T80 (temperature window of NO conversion above 80%) window of 225-550 °C and a T90 window of 250-350 °C. These values are superior to those of Cu-SSZ-13-HTA (225-450 °C for T80 and no T90 window). The results of X-ray diffraction Rietveld refinement, electron paramagnetic resonance (EPR) and spectral characterization reveal that Pr ions mainly located in the eight-membered rings (8MRs) in SSZ-13 zeolite can inhibit the generation of inactive CuOx during hydrothermal aging. This finding is further supported by density functional theory (DFT) calculations, which suggest that the presence of Pr ions restrains the transformation from Cu2+ ions in 6MRs into CuOx, resulting in enhanced hydrothermal stability. It is also noted that an excessive amount of Pr ions in Cu-SSZ-13 would result in the production of CuOx that causes the decline of catalytic performance. The present work provides a promising strategy for creating a hydrothermally stable Cu-SSZ-13 zeolite catalyst by adding secondary metal ions.

3.
Nature ; 628(8006): 99-103, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538794

ABSTRACT

Stable aluminosilicate zeolites with extra-large pores that are open through rings of more than 12 tetrahedra could be used to process molecules larger than those currently manageable in zeolite materials. However, until very recently1-3, they proved elusive. In analogy to the interlayer expansion of layered zeolite precursors4,5, we report a strategy that yields thermally and hydrothermally stable silicates by expansion of a one-dimensional silicate chain with an intercalated silylating agent that separates and connects the chains. As a result, zeolites with extra-large pores delimited by 20, 16 and 16 Si tetrahedra along the three crystallographic directions are obtained. The as-made interchain-expanded zeolite contains dangling Si-CH3 groups that, by calcination, connect to each other, resulting in a true, fully connected (except possible defects) three-dimensional zeolite framework with a very low density. Additionally, it features triple four-ring units not seen before in any type of zeolite. The silicate expansion-condensation approach we report may be amenable to further extra-large-pore zeolite formation. Ti can be introduced in this zeolite, leading to a catalyst that is active in liquid-phase alkene oxidations involving bulky molecules, which shows promise in the industrially relevant clean production of propylene oxide using cumene hydroperoxide as an oxidant.

4.
J Am Chem Soc ; 146(11): 7605-7615, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38467427

ABSTRACT

Cu-SSZ-13 has been commercialized for selective catalytic reduction with ammonia (NH3-SCR) to remove NOx from diesel exhaust. As its synthesis usually requires toxic and costly organic templates, the discovery of alternative Cu-based zeolite catalysts with organotemplate-free synthesis and comparable or even superior NH3-SCR activity to that of Cu-SSZ-13 is of great academic and industrial significance. Herein, we demonstrated that Cu-T with an intergrowth structure of offretite (OFF) and erionite (ERI) synthesized by an organotemplate-free method showed better catalytic performance than Cu-ERI and Cu-OFF as well as Cu-SSZ-13. Structure characterizations and density functional theory calculations indicated that the intergrowth structure promoted more isolated Cu2+ located at the 6MR of the intergrowth interface, resulting in a better hydrothermal stability of Cu-T than Cu-ERI and Cu-OFF. Strikingly, the low-temperature activity of Cu-T significantly increased after hydrothermal aging, while that of Cu-ERI and Cu-OFF substantially decreased. Based on in situ diffuse reflectance infrared Fourier transform spectra analysis and density functional theory calculations, the reason can be attributed to the fact that NH4NO3 formed on the CuxOy species within ERI polymorph of Cu-T underwent a fast SCR reaction pathway with the assistance of Brønsted acid sites at the intergrowth interfaces under standard SCR reaction conditions. Significantly, Cu-T exhibited a wider temperature window at a catalytic activity of over 90% than Cu-SSZ-13 (175-550 vs 175-500 °C for fresh and 225-500 vs 250-400 °C for hydrothermal treatment). This work provides a new direction for the design of high-performance NH3-SCR catalysts in terms of the interplay of the intergrowth structure of zeolites.

5.
J Am Chem Soc ; 146(13): 8939-8948, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38526452

ABSTRACT

Propane dehydrogenation (PDH) reaction has emerged as one of the most promising propylene production routes due to its high selectivity for propylene and good economic benefits. However, the commercial PDH processes usually rely on expensive platinum-based and poisonous chromium oxide based catalysts. The exploration of cost-effective and ecofriendly PDH catalysts with excellent catalytic activity, propylene selectivity, and stability is of great significance yet remains challenging. Here, we discovered a new active center, i.e., an unsaturated tricoordinated cobalt unit (≡Si-O)CoO(O-Mo) in a molybdenum-doped silicalite-1 zeolite, which afforded an unprecedentedly high propylene formation rate of 22.6 molC3H6 gCo-1 h-1 and apparent rate coefficient of 130 molC3H6 gCo-1 h-1 bar-1 with >99% of propylene selectivity at 550 °C. Such activity is nearly one magnitude higher than that of previously reported Co-based catalysts in which cobalt atoms are commonly tetracoordinated, and even superior to that of most of Pt-based catalysts under similar operating conditions. Density functional theory calculations combined with the state-of-the-art characterizations unravel the role of the unsaturated tricoordinated Co unit in facilitating the C-H bond-breaking of propane and propylene desorption. The present work opens new opportunities for future large-scale industrial PDH production based on inexpensive non-noble metal catalysts.

6.
Angew Chem Int Ed Engl ; 63(15): e202319996, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38316641

ABSTRACT

Metal halide perovskites (MHPs), renowned for their outstanding optoelectronic properties, hold significant promise as photocatalysts for hydrogen evolution reaction (HER). However, the low stability and insufficient exposure of catalytically active sites of bulky MHPs seriously impair their catalytic efficiency. Herein, we utilized an extra-large-pore zeolite ZEO-1 (JZO) as a host to confine and stabilize the CsPbBr3 nanocrystals (3.4 nm) for boosting hydrogen iodide (HI) splitting. The as-prepared CsPbBr3@ZEO-1 featured sufficiently exposed active sites, superior stability in acidic media, along with intrinsic extra-large pores of ZEO-1 that were favorable for molecule/ion adsorption and diffusion. Most importantly, the unique nanoconfinement effect of ZEO-1 led to the narrowing of the band gap of CsPbBr3, allowing for more efficient light utilization. As a result, the photocatalytic HER rate of the as-prepared CsPbBr3@ZEO-1 photocatalyst was increased to 1734 µmol ⋅ h-1 ⋅ g-1 (CsPbBr3) under visible light irradiation compared with bulk CsPbBr3 (11 µmol ⋅ h-1 ⋅ g-1 (CsPbBr3)), and the long-term durability (36 h) can be achieved. Furthermore, Pt was incorporated with well-dispersed CsPbBr3 nanocrystals into ZEO-1, resulting in a significant enhancement in activity (4826 µmol ⋅ h-1 ⋅ g-1 (CsPbBr3)), surpassing most of the Pt-integrated perovskite-based photocatalysts. Density functional theory (DFT) calculations and charge-carrier dynamics investigation revealed that the dramatically boosted photocatalytic performance of Pt/CsPbBr3@ZEO-1 could be attributed to the promotion of charge separation and transfer, as well as to the substantially lowered energy barrier for HER. This work highlights the advantage of extra-large-pore zeolites as the nanoscale platform to accommodate multiple photoactive components, opening up promising prospects in the design and exploitation of novel zeolite-confined photocatalysts for energy harvesting and storage.

7.
J Am Chem Soc ; 146(5): 3373-3382, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38272666

ABSTRACT

Reticular chemistry effectively yields porous structures with distinct topological lattices for a broad range of applications. Polyhedral oligomeric silsesquioxane (POSS)-based octatopic building blocks with a rare Oh symmetric configuration and attracting inorganic features have great potential for creating three-dimensional (3D) covalent organic frameworks (COFs) with new topologies. However, the intrinsic flexibility and intensive motion of cubane-type POSS molecules make the construction of 3D regular frameworks challenging. Herein, by fastening three or four POSS cores with per aromatic rigid linker from rational steric directions, we successfully developed serial crystalline 3D COFs with unpresented "the" and scu topologies. Both the experimental and theoretical results proved the formation of target 3D POSS-based COFs. The resultant hybrid networks with designable chemical skeletons and high surface areas maintain the superiorities of both the inorganic and organic components, such as their high compatibility with inorganic salts, abundant periodic electroactive sites, excellent thermal stability, and open multilevel nanochannels. Consequently, the polycubane COFs could serve as outstanding solid electrolytes with a high ionic conductivity of 1.23 × 10-4 S cm-1 and a lithium-ion transference number of 0.86 at room temperature. This work offers a pathway to generate ordered lattices with multiconnected flexible cube motifs and enrich the topologies of 3D COFs for potential applications.

8.
World J Pediatr ; 20(2): 165-172, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37676611

ABSTRACT

BACKGROUND: Necrotizing enterocolitis (NEC) is the most common severe gastrointestinal emergency in neonates. We designed this study to identify the pathogenic microorganisms of NEC in the microbiota of the small intestine of neonates. METHODS: Using the 16S ribosomal DNA (rDNA) sequencing method, we compared and analyzed the structure and diversity of microbiotas in the intestinal feces of different groups of neonates: patients undergoing jejunostomy to treat NEC (NP group), neonates undergoing jejunostomy to treat other conditions (NN group), and neonates with NEC undergoing conservative treatment (NC group). We took intestinal feces and saliva samples from patients at different time points. RESULTS: The beta diversities of the NP, NN, and NC groups were all similar. When comparing the beta diversities between different time points in the NP group, we found similar beta diversities at time points E1 to E3 but significant differences between the E2-E3 and E4 time points: the abundances of Klebsiella and Enterococcus (Proteobacteria) were higher at the E1-E3 time points; the abundance of Escherichia-Shigella (Proteobacteria) increased at the E2 time point, and the abundance of Klebsiella decreased significantly, whereas that of Streptococcus increased significantly at the E4 time point. CONCLUSIONS: Our results suggest that the pathological changes of intestinal necrosis in the small intestine of infants with NEC are not directly caused by excessive proliferation of pathogenic bacteria in the small intestine. The sources of microbiota in the small intestine of neonates, especially in premature infants, may be affected by multiple factors.


Subject(s)
Enterocolitis, Necrotizing , Fetal Diseases , Infant, Newborn, Diseases , Infant , Female , Infant, Newborn , Humans , RNA, Ribosomal, 16S/genetics , Infant, Premature , Intestines/microbiology , Intestine, Small
9.
J Am Chem Soc ; 145(50): 27740-27747, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38059924

ABSTRACT

Mass adoption of electric vehicles and the depletion of finite metal resources make it imperative to recycle lithium-ion batteries (LIBs). However, current recycling routes of pyrometallurgy and hydrometallurgy are mainly developed for LiCoO2 and suffer from great energy inputs and extensive processing; thus, alternative versatile and green approaches are in urgent demand. Here, we report an ingenious and versatile strategy for recycling LIBs via catalyst reconstruction, using hydrogen evolution reaction as a proof of concept. Layered, spinel, and polyanion oxide cathode materials, as catalysts, are structurally transformed into hydroxides assisted by protons or hydroxide ions, facilitating complete metal extraction (e.g., Li, Co, Ni, Mn, Fe) with high leaching efficiencies approaching 100%. This recycling method is generally applicable to almost all commercial cathode systems and extended to actual spent pouch cells. Such a green hydrogen coupling approach provides a versatile and sustainable alternative to conventional approaches and has a broad impact beyond battery recycling.

10.
Chem Sci ; 15(1): 379-388, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38131096

ABSTRACT

Atomically dispersed metal catalysts with excellent activity and stability are highly desired in heterogeneous catalysis. Herein, we synthesized zeolite-encaged Pd-based pseudo-single atoms via a facile and energy-efficient ligand-protected direct H2 reduction method. Cs-corrected scanning transmission electron microscopy, extended X-ray absorption, and pair distribution function measurements reveal that the metal species are close to atomic-level dispersion and completely confined within the intersectional channels of silicalite-1 (S-1) zeolite with the MFI framework. The Pd@S-1-H exhibits excellent activity and stability in methane combustion reactions with a complete combustion temperature of 390 °C, and no deactivation is observed even after 100 h on stream. The optimized bimetallic 0.8Pd0.2Ni(OH)2@S-1-H catalyst exhibits an excellent H2 generation rate from FA decomposition without any additives, affording a superhigh turnover frequency up to 9308 h-1 at 333 K, which represents the top activity among all of the best heterogeneous catalysts under similar conditions. Significantly, zeolite-encaged metal catalysts are first used for Cr(vi) reduction coupled with formic acid (FA) dehydrogenation and show a superhigh turnover number of 2980 mol(Cr2O72-) mol(Pd)-1 at 323 K, surpassing all of the previously reported catalysts. This work demonstrates that zeolite-encaged pseudo-single atom catalysts are promising in efficient hydrogen storage and pollutant disposal applications.

11.
Environ Sci Technol ; 57(48): 19956-19964, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37948508

ABSTRACT

Pd/SSZ-13 has been proposed as a passive NOx adsorber (PNA) for low-temperature NOx adsorption. However, it remains challenging for Pd/SSZ-13 to work efficiently when suffering from phosphorus poisoning. Herein, we report a simple and efficient strategy to regenerate the phosphorus-poisoned Pd/SSZ-13 based on the cooperation between hydrothermal aging treatment and Na cocations. It was found that hydrothermal aging treatment enabled the redispersion of Pd and P-containing species in phosphorus-poisoned Pd/SSZ-13. Meanwhile, the presence of Na cocations significantly reduced the formation of AlPO4 and retained more paired Al sites for highly dispersed Pd2+ ions, which was of great importance for the recovery of adsorption performance. To our satisfaction, the restoration ratio of the adsorption capacity of poisoned Pd/SSZ-13 was >90% after regeneration. Strikingly, the NOx adsorption activities of phosphorus-poisoned Pd/SSZ-13 with phosphorus loadings of 0.2 and 0.4 mmol g-1 almost completely recovered upon regeneration. This study demonstrates the promoting effect of Na cocations on the regeneration of phosphorus-poisoned Pd/SSZ-13 by hydrothermal aging treatment, which provides useful guidance for the design of PNA materials with excellent durability for cold-start application.


Subject(s)
Phosphorus , Poisons , Adsorption , Ions
12.
Chem Soc Rev ; 52(22): 8005-8058, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37880991

ABSTRACT

Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.

13.
Angew Chem Int Ed Engl ; 62(48): e202313101, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37792288

ABSTRACT

The selective hydrogenation of alkynes to alkenes is a crucial step in the synthesis of fine chemicals. However, the widely utilized palladium (Pd)-based catalysts often suffer from poor selectivity. In this work, we demonstrate a carbonization-reduction method to create palladium carbide subnanometric species within pure silicate MFI zeolite. The carbon species can modify the electronic and steric characteristics of Pd species by forming the predominant Pd-C4 structure and, meanwhile, facilitate the desorption of alkenes by forming the Si-O-C structure with zeolite framework, as validated by the state-of-the-art characterizations and theoretical calculations. The developed catalyst shows superior performance in the selective hydrogenation of alkynes over mild conditions (298 K, 2 bar H2 ), with 99 % selectivity to styrene at a complete conversion of phenylacetylene. In contrast, the zeolite-encapsulated carbon-free Pd catalyst and the commercial Lindlar catalyst show only 15 % and 14 % selectivity to styrene, respectively, under identical reaction conditions. The zeolite-confined Pd-carbide subnanoclusters promise their superior properties in semihydrogenation of alkynes.

14.
J Am Chem Soc ; 145(44): 24116-24125, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37783464

ABSTRACT

All-solid-state batteries with a high energy density and safety are desirable candidates for next-generation energy storage applications. However, conventional solid electrolytes for all-solid-state batteries encounter limitations such as poor ionic conduction, interfacial compatibility, instability, and high cost. Herein, taking advantage of the ingenious capability of zeolite to incorporate functional guests in its void space, we present an innovative ionic activation strategy based on the "guest wrench" mechanism, by introducing a pair of cation and anion of LiTFSI-based guest species (GS) into the supercage of the LiX zeolite, to fabricate a zeolite membrane (ZM)-based solid electrolyte (GS-ZM) with high Li ionic conduction and interfacial compatibility. The restriction of zeolite frameworks toward the framework-associated Li ions is significantly reduced through the dynamic coordination of Li ions with the "oxygen wrench" of TFSI- at room temperature as shown by experiments and Car-Parrinello molecular dynamics simulations. Consequently, the GS-ZM shows an ∼100% increase in ionic conductivity compared with ZM and an outstanding Li+ transference number of 0.97. Remarkably, leveraging the superior ionic conduction of GS-ZM with the favorable interface structure between GS-ZM and electrodes, the assembled all-solid-state Li-ion and Li-air batteries based on GS-ZM exhibit the best-level electrochemical performance much superior to batteries based on liquid electrolytes: a capacity retention of 99.3% after 800 cycles at 1 C for all-solid-state Li-ion batteries and a cycle life of 909 cycles at 500 mA g-1 for all-solid-state Li-air batteries. The mechanistic discovery of a "guest wrench" in zeolite will significantly enhance the adaptability of zeolite-based electrolytes in a variety of all-solid-state energy storage systems with high performance, high safety, and low cost.

15.
Angew Chem Int Ed Engl ; 62(49): e202312131, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37819839

ABSTRACT

Creation of intrapenetrated mesopores with open highway from external surface into the interior of zeolite crystals are highly desirable that can significantly improve the molecular transport and active sites accessibility of microporous zeolites to afford enhanced catalytic properties. Here, different from traditional zeolite-seeded methods that generally produced isolated mesopores in zeolites, nanosized amorphous protozeolites with embryo structure of zeolites were used as seeds for the construction of single-crystalline hierarchical ZSM-5 zeolites with intrapenetrated mesopores (mesopore volume of 0.51 cm3 g-1 ) and highly complete framework. In this strategy, in contrast to the conventional synthesis, only a small amount of organic structure directing agents and a low crystallization temperature were adopted to promise the protozeolites as the dominant growth directing sites to induce crystallization. The protozeolite nanoseeds provided abundant nucleation sites for surrounding precursors to be crystallized, followed by oriented coalescence of crystallites resulting in the formation of intrapenetrated mesopores. The as-prepared hierarchical ZSM-5 zeolites exhibited ultra-long lifetime of 443.9 hours and a high propylene selectivity of 47.92 % at a WHSV of 2 h-1 in the methanol-to-propylene reaction. This work provides a facile protozeolite-seeded strategy for the synthesis of intrapenetrated hierarchical zeolites that are highly effective for catalytic applications.

16.
Heliyon ; 9(8): e19268, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37654465

ABSTRACT

There is growing evidence that genetic factors can influence human athletic performance. In many sports performances, excellent coordination and agility are the keys to mastery. However, few studies have been devoted to identifying genetic influences on athletic performance. Methods: We generated a derived measure of coordination and agility from the data of hexagonal jumps and T-runs and conducted genome-wide association and meta-analysis studies focused on coordination and agility. Results: The phenotypic correlation and genetic covariance analysis indicated that hexagonal jumps and T-runs were possibly influenced by the same set of genetic factors (R = 0.27, genetic covariance = 0.59). Meta-analysis identified rs117047321 genome-wide significant association (N = 143, P < 10E-5) with coordination and agility, and this association was replicated in the replication group (N = 318, P < 0.05). The CG genotype samples of this single nucleotide polymorphism (SNP) required a longer average movement time than the CC genotype samples, and the CG genotype only exists in Asia, which may belong to the East Asia-specific variation. This SNP is located on MYO5B, which is highly expressed in tissues such as the brain, heart, and muscle, suggesting that this locus might be a genetic factor related to human energy metabolism. Conclusion: Our study indicated that genetic factors can affect the athletic performance of coordination and agility. These findings may provide valuable insights for using genetic factors to evaluate sports characteristics.

17.
Mater Horiz ; 10(11): 5079-5086, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37680183

ABSTRACT

Ultrasmall CsPbBr3 perovskite quantum dots (PQDs) as promising blue-emitting materials are highly desired for full-color display and lighting applications, but their inferior efficiency and poor ambient stability hinder extensive applications. Herein, a "break-and-repair" strategy has been developed to tightly confine monodispersed ultrasmall CsPbBr3 PQDs in a zeolite. In this strategy, the CsPbBr3 PQDs are introduced into the zeolite via a high temperature evaporation method, wherein the perovskite precursors break the zeolite framework, and amino acids and silane are then used to fix the damaged framework and lock the perovskite QDs within the matrix. By modulating the synthetic conditions to control the growth of CsPbBr3, PQDs with ultrasmall size of 2 nm have been obtained in the zeolite, giving emission centered at 460 nm with a high quantum yield of 76.93%. Strikingly, the PQDs@zeolite composite exhibits water-induced reversible photoluminescence promoted by the coordination between the amino acids and PQDs in a dynamic manner, achieving enhanced water stability (14 days in aqueous solution). This work provides a new perspective for the synthesis of water-stable blue-emitting perovskite composites for potential applications in lighting fields.

18.
J Am Chem Soc ; 145(39): 21231-21241, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37748094

ABSTRACT

Zeolite nonclassical growth via particle attachment has been proposed for two decades, yet the attachment mechanism and kinetic regulation remain elusive. Here, nonclassical growth of an MFI-type zeolite has been achieved by using amorphous protozeolite (PZ) nanoparticles containing encapsulated TPA+ templates and abundant silanols (Si-OH) as sole precursors under hydrothermal conditions. The silanol characteristics of the precursor were studied by two-dimensional (2D) solid-state nuclear magnetic resonance (NMR) correlation spectroscopy, which were proven to play critical roles in determining precursor attachment behavior and crystal growth orientation. Under mechanical ball-milling or tablet-pressing process, pressure drove the fusion of spherical PZ into platelet-like integrated PZ (IPZ) coupled with transformations of external silanols from evenly distributed to curvature-dependent distributed and internal silanols from isolated to spatially proximate. Compared to isolated silanols, the spatially proximate silanols possessed a stronger correlation with TPA+, benefiting the formation of Si-O-Si bonds via silanol condensation. Subsequently, driven by minimization of surface energy, particle attachment of the platelet-like IPZ precursor preferentially occurred at high-curvature surfaces with high-density silanols, leading to anisotropic rates of nonclassical growth and thus the formation of high-aspect-ratio MFI-type zeolite nanosheets. Advanced electron microscopy provided direct evidence of attachment of amorphous IPZ precursors to crystalline intermediate surfaces along the c-axis direction with the formation of amorphous-crystalline interfaces, followed by interface elimination and structural evolution to a single-crystalline phase. Our findings not only unravel the zeolite nonclassical growth mechanism but also reveal the critical role of silanol chemistry in kinetic regulation, which is of great importance for pursuing a tailored zeolite synthesis.

19.
Angew Chem Int Ed Engl ; 62(32): e202306174, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37190928

ABSTRACT

Cu-exchanged low-silica CHA zeolites (Si/Al≤4) synthesized without organic templates are promising candidate catalysts for ammonia selective catalytic reduction of nitrogen oxides (NH3 -SCR), but their practical application is restricted due to the low hydrothermal stability. Here, inspired by the transcription from duplex DNA to RNA, we synthesized Al pairs enriched low-silica CHA zeolite (CHA-SPAEI, Si/Al=3.7) by using silicoaluminophosphate (SAPO) featured by strict alternation of -Al-O-P(Si)-O-Al-O- tetrahedra as seed. The proportion of Al pairs in CHA-SPAEI is 78 %, which is much higher than that in the conventional low-silica CHA (CHA-LS, 52 %). After hydrothermal ageing at 800 °C for 6 h, Cu-exchanged CHA-SPAEI shows NO conversion above 90 % within 225-500 °C under a gas hourly space velocity of 200,000 h-1 , which is much better than that of Cu-exchanged CHA-LS. The spatial close proximity of Al pairs in CHA-SPAEI is confirmed by the 27 Al double-quantum single-quantum two-dimensional NMR analyses. The strict -P(Si)-O-Al-O-P(Si)-O- sequence in the fragments from the dissolution of SAPO seed promotes the Al pairs with the -Al-O-Si-O-Al-O- sequence via a transcription process. The utilization of aluminophosphate-based zeolites as seeds opens up a new avenue for the regulation of the Al distribution in zeolites.

20.
Adv Mater ; : e2302912, 2023 May 13.
Article in English | MEDLINE | ID: mdl-37177904

ABSTRACT

Core-shell catalysts with functional shells can increase the activity and stability of the catalysts in selective catalytic reduction of NOx with ammoniax . However, the conventional approaches based on multistep fabrication for core-shell structures encounter persistent restrictions regarding strict synthesis conditions and limited design flexibility. Herein, a facile coaxial 3D printing strategy is for the first time developed to construct zeolite-based core-shell monolithic catalysts with interconnected honeycomb structures, in which the hydrophilic noncompact silica serves as shell and Cu-SSZ-13 zeolite acts as core. Compared to a Cu-SSZ-13 monolith which suffers from the interfacial diffusion, the SiO2 shell layer can increase the accessibility of active sites over Cu-SSZ-13@SiO2 , resulting in a 10-20% higher NO conversion at200-550 °C under 300 000 cm3 g-1 h-1 . Meanwhile, a thicker SiO2 shell enhances the hydrothermal stability of the aged catalyst by inhibiting the dealumination and the formation of CuOx . Other representative monolithic catalysts with different topological zeolites as shell and diverse metal oxides as the core can be also realized by this coaxial 3D printing. This strategy allows multiple porous materials to be directly integrated, which allows for flexible design and fabrication of various core-shell monolithic catalysts with customized functionalities.

SELECTION OF CITATIONS
SEARCH DETAIL
...