Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 17096, 2024 07 24.
Article in English | MEDLINE | ID: mdl-39048597

ABSTRACT

Excessive weight (overweight and obesity) is a common disorder involving genetic and environmental factors, associated with cardiovascular diseases, type-2 diabetes, and others. NOTCH1 is critical for the maintenance of stem cells and adult tissues, being reported as a key player in metabolism and adipogenesis in animals. Thus, we test the hypothesis that NOTCH1 Single Nucleotide Polymorphisms (SNPs) are associated with excessive weight. Participants from the census-based cohort SABE (Saúde, Bem Estar e Envelhecimento-Health, Well-Being, and Aging), carried out in the city of São Paulo-Brazil, were stratified into cases and controls according to BMI. We filter the SNPs located at the start and end positions of NOTCH1 and 50 Kb on both sides. We selected SNPs with minor allelic frequency (MAF) greater than or equal to 0.01 and Hardy-Weinberg equilibrium (p > 0.05) and r2 ≥ 0.8. We performed an association study with genotypes and haplotypes, as well as in silico functional analysis of the identified SNPs. We observed an association of the SNP rs9411207 with the risk of excessive weight, under log-additive model, and the genotype distribution showed an increased frequency of homozygous TT (OR 1.50, CI 1.20-1.88; p = 0.0002). The haplotype GAT constructed from this and other SNPs in high Linkage Disequilibrium was more frequent in excessive-weight individuals (p = 0.003). In silico analyses suggested that these SNPs are likely to affect the transcription of NOTCH1 and other genes involved in adipogenesis and metabolism. This is the first study reporting association between NOTCH1 SNPs and the risk of excessive weight. Considering the possibility of NOTCH1 modulation, additional population studies are important to replicate these data and confirm the usefulness of risk genotypes for management strategies of excessive weight.


Subject(s)
Obesity , Overweight , Polymorphism, Single Nucleotide , Receptor, Notch1 , Receptor, Notch1/genetics , Humans , Brazil/epidemiology , Male , Obesity/genetics , Female , Aged , Overweight/genetics , Genetic Predisposition to Disease , Middle Aged , Haplotypes , Gene Frequency , Case-Control Studies , Genotype , Body Mass Index
2.
Clin Transl Oncol ; 26(3): 765-773, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37620706

ABSTRACT

BACKGROUND: Brain metastasis (BM) in gastric cancer (GC) is underestimated, and human epidermal growth factor receptor 2 (HER2) overexpression is a durable poor prognostic factor. We explored the relationship between the two and made a survival analysis. METHODS: HER2 expression and BM status were collected from GC patients who were diagnosed between December 2009 and May 2021. We collected GC patients diagnosed between 2010 and 2016 from the SEER database. The primary endpoint was survival from the diagnosis of BM. Multivariable logistic regression was used to determine potential risk factors of BM at diagnosis in SEER database. Survival analysis was performed using the Kaplan-Meier method. RESULT: There were 513 HER2-positive GC patients, including 16 (3.1%) with BM. Among 38 brain metastasis GC patients we collected, 16 (42.1%) patients were HER2 positive. We collected 34,199 GC patients from the SEER database and there were 260 (0.76%) patients with BM at diagnosis. GC patients that are male, white, of younger age, with primary lesions located in the proximal stomach or with distant lymph nodes, liver, bone, or lung metastasis are more likely to develop BM. The median overall survival time from diagnosis of BM was 12.73 months, and the survival time from brain metastasis of HER2-positive patients was numerically shorter, though the difference was not significant (5.30 months vs.16.13 months, P = 0.28.) CONCLUSION: The incidence of BM in patients with HER2-positive gastric cancer is 4.08 times higher than that in general patients. The median overall survival time from BM is shorter for HER2-positive patients.


Subject(s)
Brain Neoplasms , Stomach Neoplasms , Humans , Male , Female , Stomach Neoplasms/pathology , Receptor, ErbB-2/metabolism , Prognosis , Survival Analysis , Risk Factors
3.
Eur J Hum Genet ; 31(9): 1017-1022, 2023 09.
Article in English | MEDLINE | ID: mdl-37280359

ABSTRACT

De novo variants (DNVs) analysis has proven to be a powerful approach to gene discovery in Autism Spectrum Disorder (ASD), which has not yet been shown in a Brazilian ASD cohort. The relevance of inherited rare variants has also been suggested, particularly in oligogenic models. We hypothesized that three-generation analyses of DNVs could provide new insights into the relevance of de novo and inherited variants across generations. To accomplish this goal, we performed whole-exome sequencing of 33 septet families composed of probands, parents, and grandparents (n = 231 individuals) and compared DNV rates (DNVr) between generations and those from two control cohorts. The DNVr in the probands (DNVr = 1.16) was marginally higher than in parents (DNVr = 0.60; p = 0.054), and in controls (DNVr = 0.68; p = 0.035, congenital heart disorder and DNVr = 0.70; p = 0.047, unaffected ASD siblings from Simons Simplex Collection). Moreover, most of the DNVs were found to have paternal origin in both generations (84.6%). Finally, we observed that 40% (6/15) of the DNVs in parents transmitted for probands are in ASD or ASD candidate genes, representing recently emerged risk variants to ASD in their families and suggest ZNF536, MSL2 and HDAC9 as ASD candidate genes. We did not observe an enrichment of risk variants nor sex bias of transmitted variants in the three generations, that can be due to sample size. These results further reinforce the relevance of de novo variants in ASD.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Humans , Autistic Disorder/genetics , Autism Spectrum Disorder/genetics , Exome , Genetic Predisposition to Disease , Family
4.
Gene ; Gene;875jul.2023.
Article in English | CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1444289

ABSTRACT

Familial hypercholesterolemia (FH) is a monogenic disease characterized by high plasma low-density lipoprotein cholesterol (LDL-c) levels and increased risk of premature atherosclerotic cardiovascular disease. Mutations in FH-related genes account for 40% of FH cases worldwide. In this study, we aimed to assess the pathogenic variants in FH-related genes in the Brazilian FH cohort FHBGEP using exon-targeted gene sequencing (ETGS) strategy. FH patients (n = 210) were enrolled at five clinical sites and peripheral blood samples were obtained for laboratory testing and genomic DNA extraction. ETGS was performed using MiSeq platform (Illumina). To identify deleterious variants in LDLR, APOB, PCSK9, and LDLRAP1, the long-reads were subjected to Burrows-Wheeler Aligner (BWA) for alignment and mapping, followed by variant calling using Genome Analysis Toolkit (GATK) and ANNOVAR for variant annotation. The variants were further filtered using in-house custom scripts and classified according to the American College Medical Genetics and Genomics (ACMG) guidelines. A total of 174 variants were identified including 85 missense, 3 stop-gain, 9 splice-site, 6 InDel, and 71 in regulatory regions (3'UTR and 5'UTR). Fifty-two patients (24.7%) had 30 known pathogenic or likely pathogenic variants in FH-related genes according to the American College Medical and Genetics and Genomics guidelines. Fifty-three known variants were classified as benign, or likely benign and 87 known variants have shown uncertain significance. Four novel variants were discovered and classified as such due to their absence in existing databases. In conclusion, ETGS and in silico prediction studies are useful tools for screening deleterious variants and identification of novel variants in FH-related genes, they also contribute to the molecular diagnosis in the FHBGEP cohort.

5.
Gene ; 875: 147501, 2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37217153

ABSTRACT

Familial hypercholesterolemia (FH) is a monogenic disease characterized by high plasma low-density lipoprotein cholesterol (LDL-c) levels and increased risk of premature atherosclerotic cardiovascular disease. Mutations in FH-related genes account for 40% of FH cases worldwide. In this study, we aimed to assess the pathogenic variants in FH-related genes in the Brazilian FH cohort FHBGEP using exon-targeted gene sequencing (ETGS) strategy. FH patients (n = 210) were enrolled at five clinical sites and peripheral blood samples were obtained for laboratory testing and genomic DNA extraction. ETGS was performed using MiSeq platform (Illumina). To identify deleterious variants in LDLR, APOB, PCSK9, and LDLRAP1, the long-reads were subjected to Burrows-Wheeler Aligner (BWA) for alignment and mapping, followed by variant calling using Genome Analysis Toolkit (GATK) and ANNOVAR for variant annotation. The variants were further filtered using in-house custom scripts and classified according to the American College Medical Genetics and Genomics (ACMG) guidelines. A total of 174 variants were identified including 85 missense, 3 stop-gain, 9 splice-site, 6 InDel, and 71 in regulatory regions (3'UTR and 5'UTR). Fifty-two patients (24.7%) had 30 known pathogenic or likely pathogenic variants in FH-related genes according to the American College Medical and Genetics and Genomics guidelines. Fifty-three known variants were classified as benign, or likely benign and 87 known variants have shown uncertain significance. Four novel variants were discovered and classified as such due to their absence in existing databases. In conclusion, ETGS and in silico prediction studies are useful tools for screening deleterious variants and identification of novel variants in FH-related genes, they also contribute to the molecular diagnosis in the FHBGEP cohort.


Subject(s)
Hyperlipoproteinemia Type II , Proprotein Convertase 9 , Humans , Proprotein Convertase 9/genetics , Brazil , Hyperlipoproteinemia Type II/genetics , Mutation , Exons , Receptors, LDL/genetics , Phenotype
6.
Transl Psychiatry ; 12(1): 234, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35668055

ABSTRACT

Oligogenic inheritance of autism spectrum disorder (ASD) has been supported by several studies. However, little is known about how the risk variants interact and converge on causative neurobiological pathways. We identified in an ASD proband deleterious compound heterozygous missense variants in the Reelin (RELN) gene, and a de novo splicing variant in the Cav3.2 calcium channel (CACNA1H) gene. Here, by using iPSC-derived neural progenitor cells (NPCs) and a heterologous expression system, we show that the variant in Cav3.2 leads to increased calcium influx into cells, which overactivates mTORC1 pathway and, consequently, further exacerbates the impairment of Reelin signaling. Also, we show that Cav3.2/mTORC1 overactivation induces proliferation of NPCs and that both mutant Cav3.2 and Reelin cause abnormal migration of these cells. Finally, analysis of the sequencing data from two ASD cohorts-a Brazilian cohort of 861 samples, 291 with ASD; the MSSNG cohort of 11,181 samples, 5,102 with ASD-revealed that the co-occurrence of risk variants in both alleles of Reelin pathway genes and in one allele of calcium channel genes confer significant liability for ASD. Our results support the notion that genes with co-occurring deleterious variants tend to have interconnected pathways underlying oligogenic forms of ASD.


Subject(s)
Autism Spectrum Disorder , Calcium Channels, T-Type , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Calcium Channels/genetics , Calcium Channels, T-Type/genetics , Genetic Predisposition to Disease , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Multifactorial Inheritance
8.
Nat Commun ; 13(1): 1004, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35246524

ABSTRACT

As whole-genome sequencing (WGS) becomes the gold standard tool for studying population genomics and medical applications, data on diverse non-European and admixed individuals are still scarce. Here, we present a high-coverage WGS dataset of 1,171 highly admixed elderly Brazilians from a census-based cohort, providing over 76 million variants, of which ~2 million are absent from large public databases. WGS enables identification of ~2,000 previously undescribed mobile element insertions without previous description, nearly 5 Mb of genomic segments absent from the human genome reference, and over 140 alleles from HLA genes absent from public resources. We reclassify and curate pathogenicity assertions for nearly four hundred variants in genes associated with dominantly-inherited Mendelian disorders and calculate the incidence for selected recessive disorders, demonstrating the clinical usefulness of the present study. Finally, we observe that whole-genome and HLA imputation could be significantly improved compared to available datasets since rare variation represents the largest proportion of input from WGS. These results demonstrate that even smaller sample sizes of underrepresented populations bring relevant data for genomic studies, especially when exploring analyses allowed only by WGS.


Subject(s)
Genomics , Metagenomics , Aged , Brazil/epidemiology , Genome, Human/genetics , Genomics/methods , Humans , Polymorphism, Single Nucleotide , Whole Genome Sequencing
9.
Environ Pollut ; 292(Pt A): 118241, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34582918

ABSTRACT

Arsenic (As) pollution remains a major threat to the quality of global soils and drinking water. The health effects of As pollution are often severe and have been largely reported across Asia and South America. This study investigated the possibility of using unmodified biochar derived from rice husk (RB) and aspen wood (WB) at 400 °C and 700 °C to enhance the precipitation of calcium/arsenic compounds for the removal of As(III) from solution. The approach was based on utilizing calcium to precipitate arsenic in solution and adding unmodified biochar to enhance the process. Using this approach, As(III) concentration in aqueous solution decreased by 58.1% when biochar was added, compared to 25.4% in the absence of biochar. Varying the pH from acidic to alkaline enabled an investigation into the pH dependent dynamics of the approach. Results indicated that significant precipitation was only possible at near neutral pH (i.e. pH = 6.5) where calcium arsenites (i.e. Ca(AsO2)2, and CaAsO2OH•½H2O) and arsenates (i.e. Ca5(AsO4)3OH) were precipitated and deposited as aggregates in the pores of biochars. Arsenite was only slightly precipitated under acidic conditions (pH = 4.5) while no arsenite was precipitated under alkaline conditions (pH = 9.5). Arsenite desorption from wood biochar was lowest at pH 6.5 indicating that wood biochar was able to retain a large quantity of the precipitates formed at pH 6.5 compared to pH 4.5 and pH 9.5. Given that the removal of As(III) from solution is often challenging and that biochar modification invites additional cost, the study demonstrated that low cost unmodified biochar can be effective in enhancing the removal of As(III) from the environment through Ca-As precipitation.


Subject(s)
Arsenic , Adsorption , Arsenates , Calcium , Charcoal
10.
Clin Genet ; 101(1): 134-141, 2022 01.
Article in English | MEDLINE | ID: mdl-34664255

ABSTRACT

Prediction of pathogenicity of rare copy number variations (CNVs), a genomic alteration known to contribute to the etiology of autism spectrum disorder (ASD), represents a serious limitation to interpreting genetic tests, particularly for genetic counseling purposes. Chromosomal microarray analysis (CMA) was conducted in a unique collection of 144 Brazilian individuals with ASD of strong European and African ancestries. Rare CNVs were detected in 39 patients: 41 of unknown significance (VUS), four pathogenic and one likely pathogenic CNVs (clinical yield of 4.1%; 5/122). Based on gene content and recurrence in three large cohorts [a Brazilian neurodevelopmental disorder cohort, the autism MSSNG cohort, and the Canadian-based Centre for Applied Genomics microarray database], this work strengthened the pathogenicity of 14 genes (FAT1, CAMK4, BIRC6, DPP6, CSMD1, CTNNA3, CDH8/CDH11, CDH13, OR1C1, CNTN6, CNTNAP4, FGF2 and PTPRN2) within 14 CNVs. Notably, enrichment of cell adhesion proteins to ASD etiology was identified (p < 0.05), highlighting the importance of these gene families in the etiology of ASD.


Subject(s)
Alleles , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/genetics , Cell Adhesion/genetics , DNA Copy Number Variations , Genetic Predisposition to Disease , Adolescent , Adult , Brazil , Child , Child, Preschool , Chromosome Mapping , Comparative Genomic Hybridization , Female , Genetic Association Studies , Humans , Infant , Male , Phenotype , Young Adult
11.
Braz. J. Pharm. Sci. (Online) ; 58: e20225, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1420359

ABSTRACT

Abstract A cationic liposomal gene delivery system comprising DOTAP, DOPE, and cholesterol was prepared and optimized. The results showed that the liposome/DNA (LP/DNA) system had spherical morphology, with a particle size of around 150 nm and zeta potential of approximately 30 mV. Cytotoxicity experiments showed that cells treated with all of the liposome carriers- with the exception of LP1-had more than 80% viability even at a weight ratio of 30. The in vitro transfection efficiency was measured using a Promega™ Luciferase Assay System. Of the tested lipoplexes, LP2/DNA showed the highest cell transfection efficiency (at a weight ratio of 10)-which was similar to or slightly lower than that of Lipofectamine® 2000 in HeLa, A549, and SPC-A1 cell lines. After freeze-drying, the cell transfection efficiency decreased slightly (P>0.05). The cell uptake mechanism study showed that LP/DNA lipoplexes mainly entered cells via clathrin-mediated and caveolin-mediated endocytic pathways. The results confirmed that LP2 has potential for use as an effective gene carrier, and provides experimental evidence to support its further development as a safe and effective gene delivery system.

12.
Res. soc. adm. pharm ; Res. soc. adm. pharm;17(7): 1347-1355, July. 2021. graf.
Article in English | CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1283429

ABSTRACT

BACKGROUND: Familial hypercholesterolemia (FH) is a genetic disease that affects millions of people worldwide. OBJECTIVES: The study protocol FHBGEP was design to investigate the main genomic, epigenomic, and pharmacogenomic factors associated with FH and polygenic hypercholesterolemia (PH). METHODS: FH patients will be enrolled at six research centers in Brazil. An exon-targeted gene strategy will be used to sequence a panel of 84 genes related to FH, PH, pharmacogenomics and coronary artery disease. Variants in coding and regulatory regions will be identified using a proposed variant discovery pipeline and classified according to the American College Medical Genetics guidelines. Functional effects of variants in FH-related genes will be investigated by in vitro studies using lymphocytes and cell lines (HepG2, HUVEC and HEK293FT), CRISPR/Cas9 mutagenesis, luciferase reporter assay and other technologies. Functional studies in silico, such as molecular docking, molecular dynamics, and conformational analysis, will be used to explore the impact of novel variants on protein structure and function. DNA methylation profile and differential expression of circulating non-coding RNAs (miRNAs and lncRNAs) will be analyzed in FH patients and normolipidemic subjects (control group). The influence of genomic and epigenomic factors on metabolic and inflammatory status will be analyzed in FH patients. Pharmacogenomic studies will be conducted to investigate the influence of genomic and epigenomic factors on response to statins in FH patients. SUMMARY: The FHBGEP protocol has the potential to elucidate the genetic basis and molecular mechanisms involved in the pathophysiology of FH and PH, particularly in the Brazilian population. This pioneering approach includes genomic, epigenomic and functional studies, which results will contribute to the improvement of the diagnosis, prognosis and personalized therapy of FH patients.


Subject(s)
Pharmacogenetics , Coronary Artery Disease , Epigenomics , Genes , Hypercholesterolemia
13.
J Microbiol Immunol Infect ; 54(6): 1154-1158, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32741680

ABSTRACT

Leishmaniasis is prevalent in Southern Europe, the Middle East, India, Africa, and Central and South America. Cutaneous leishmaniasis may spontaneously heal over time without treatment; however, risk of visceral dissemination and the impact of cosmetic defect are important concerns. We report a Case of cutaneous leishmaniasis in a patient who ever traveled to Mexico before the onset of a deteriorating wound around the swollen left eyebrow. A diagnosis of infection with Leishmania mexicana was made based on histopathological examination and molecular identification. Systemic treatment with liposomal amphotericin B and ketoconazole were administered with gradual healing of the lesion. Also, this traveler case implicates that the spread of endemic parasitic diseases may be a concealed risk on the public health for Taiwan underlying globalization.


Subject(s)
Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/drug therapy , Travel-Related Illness , Adult , Amphotericin B/therapeutic use , DNA, Protozoan/genetics , Humans , Ketoconazole/therapeutic use , Leishmania mexicana/genetics , Leishmania mexicana/isolation & purification , Leishmaniasis, Cutaneous/pathology , Male , Treatment Outcome
14.
Res Social Adm Pharm ; 17(7): 1347-1355, 2021 07.
Article in English | MEDLINE | ID: mdl-33129683

ABSTRACT

BACKGROUND: Familial hypercholesterolemia (FH) is a genetic disease that affects millions of people worldwide. OBJECTIVES: The study protocol FHBGEP was design to investigate the main genomic, epigenomic, and pharmacogenomic factors associated with FH and polygenic hypercholesterolemia (PH). METHODS: FH patients will be enrolled at six research centers in Brazil. An exon-targeted gene strategy will be used to sequence a panel of 84 genes related to FH, PH, pharmacogenomics and coronary artery disease. Variants in coding and regulatory regions will be identified using a proposed variant discovery pipeline and classified according to the American College Medical Genetics guidelines. Functional effects of variants in FH-related genes will be investigated by in vitro studies using lymphocytes and cell lines (HepG2, HUVEC and HEK293FT), CRISPR/Cas9 mutagenesis, luciferase reporter assay and other technologies. Functional studies in silico, such as molecular docking, molecular dynamics, and conformational analysis, will be used to explore the impact of novel variants on protein structure and function. DNA methylation profile and differential expression of circulating non-coding RNAs (miRNAs and lncRNAs) will be analyzed in FH patients and normolipidemic subjects (control group). The influence of genomic and epigenomic factors on metabolic and inflammatory status will be analyzed in FH patients. Pharmacogenomic studies will be conducted to investigate the influence of genomic and epigenomic factors on response to statins in FH patients. SUMMARY: The FHBGEP protocol has the potential to elucidate the genetic basis and molecular mechanisms involved in the pathophysiology of FH and PH, particularly in the Brazilian population. This pioneering approach includes genomic, epigenomic and functional studies, which results will contribute to the improvement of the diagnosis, prognosis and personalized therapy of FH patients.


Subject(s)
Hyperlipoproteinemia Type II , Brazil , Epigenomics , Genomics , Humans , Hyperlipoproteinemia Type II/drug therapy , Hyperlipoproteinemia Type II/genetics , Molecular Docking Simulation , Pharmacogenetics
15.
BMC Med Genomics ; 13(1): 157, 2020 10 23.
Article in English | MEDLINE | ID: mdl-33097049

ABSTRACT

BACKGROUND: The use of noninvasive techniques to determine paternity prenatally is increasing because it reduces the risks associated with invasive procedures. Current methods, based on SNPs, use the analysis of at least 148 markers, on average. METHODS: To reduce the number of regions, we used microhaplotypes, which are chromosomal segments smaller than 200 bp containing two or more SNPs. Our method employs massively parallel sequencing and analysis of microhaplotypes as genetic markers. We tested 20 microhaplotypes and ascertained that 19 obey Hardy-Weinberg equilibrium and are independent, and data from the 1000 Genomes Project were used for population frequency and simulations. RESULTS: We performed simulations of true and false paternity, using the 1000 Genomes Project data, to confirm if the microhaplotypes could be used as genetic markers. We observed that at least 13 microhaplotypes should be used to decrease the chances of false positives. Then, we applied the method in 31 trios, and it was able to correctly assign the fatherhood in cases where the alleged father was the real father, excluding the inconclusive results. We also cross evaluated the mother-plasma duos with the alleged fathers for false inclusions within our data, and we observed that the use of at least 15 microhaplotypes in real data also decreases the false inclusions. CONCLUSIONS: In this work, we demonstrated that microhaplotypes can be used to determine prenatal paternity by using only 15 regions and with admixtures of DNA.


Subject(s)
DNA/analysis , Genetic Markers , Haplotypes , Noninvasive Prenatal Testing/methods , Paternity , Polymorphism, Single Nucleotide , DNA/genetics , Female , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Male , Pilot Projects , Pregnancy
16.
Braz J Microbiol ; 51(4): 1665-1672, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32557281

ABSTRACT

With the high-frequency use or abuse of antifungal drugs, the crisis of drug-resistant fungi continues to increase worldwide; in particular, the infection of drug-resistant Candida albicans brings the great challenge to the clinical treatment. Therefore, to decelerate the spread of this resistance, it is extremely urgent to facilitate the new antifungal targets with novel drugs. Phosphopantetheinyl transferases PPTases (Ppt2 in Candida albicans) had been identified in bacterium and fungi and mammals, effects as a vital enzyme in the metabolism of organisms in C. albicans. Ppt2 transfers the phosphopantetheinyl group of coenzyme A to the acyl carrier protein Acp1 in mitochondria for the synthesis of lipoic acid that is essential for fungal respiration, so making Ppt2 an ideal target for antifungal drugs. In this study, 110 FDA-approved drugs were utilized to investigate the Ppt2 inhibition against drug-resistant Candida albicans by the improved fluorescence polarization experiments, which have enough druggability and structural variety under the novel strategy of drug repurposing. Thereinto, eight agents revealed the favourable Ppt2 inhibitory activities. Further, broth microdilution assay of incubating C. albicans with these eight drugs showed that pterostilbene, procyanidine, dichlorophen and tea polyphenol had the superior MIC values. In summary, these findings provide more valuable insight into the treatment of drug-resistant C. albicans.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Drug Resistance, Fungal/drug effects , Enzyme Inhibitors/pharmacology , Transferases (Other Substituted Phosphate Groups)/antagonists & inhibitors , Candida albicans/enzymology , Drug Repositioning , Fungal Proteins/antagonists & inhibitors , Microbial Sensitivity Tests
17.
Biomed Res Int ; 2020: 4741237, 2020.
Article in English | MEDLINE | ID: mdl-32337252

ABSTRACT

Tuberculosis (TB) is an infectious disease, caused by Mycobacterium tuberculosis, primarily affecting the lungs. The M. tuberculosis strain of the Haarlem family named M was responsible for a large multidrug-resistant TB (MDR-TB) outbreak in Buenos Aires. This outbreak started in the early 1990s and in the mid 2000s still accounted for 29% of all MDR-TB cases in Argentina. By contrast, a clonal variant of strain M, named 410, has caused a single tuberculosis case since the onset of the outbreak. The molecular bases of the high epidemiological fitness of the M strain remain unclear. To assess its unique molecular properties, herein, we performed a comparative protein and lipid analysis of a representative clone of the M strain (Mp) and the nonprosperous M variant 410. We also evaluated their growth in low pH. The variant 410 had higher levels of latency proteins under standard conditions and delayed growth at low pH, suggesting that it is more sensitive to stress stimuli than Mp. Moreover, Mp showed higher levels of mycolic acids covalently attached to the cell wall and lower accumulation of free mycolic acids in the outer layer than the 410 strain. The low expression of latency proteins together with the reduced content of surface mycolic acids may facilitate Mp to evade the host immune responses.


Subject(s)
Drug Resistance, Multiple, Bacterial , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Tuberculosis, Multidrug-Resistant/epidemiology , Argentina/epidemiology , Bacterial Proteins , Cell Wall/metabolism , Disease Outbreaks , Hydrogen-Ion Concentration , Mycolic Acids/metabolism , Proteomics , Tandem Mass Spectrometry , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology
18.
Environ Pollut ; 250: 639-649, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31035146

ABSTRACT

Magnetic ß-cyclodextrin (ß-CD) porous polymer nanospheres (P-MCD) was fabricated by one-pot solvent thermal method using ß-CD immobilized Fe3O4 magnetic nanoparticles with tetrafluoroterephthalonitrile as the monomer. Compared with the ß-CD polymerization method reported in the literature,_ENREF_1 the synthetic route is effective and simple, thereby overcoming the harsh conditions that require nitrogen protection and always maintain anhydrous and oxygen-free. Moreover, the immobilization of ß-CD on magnetic nanoparticles is combined with the cross-linking polymerization of the cross-linker, leading to a good synergistic effect on the removal of contaminants. Meanwhile, the dispersibility of the magnetic carrier enhances the dispersion of the ß-CD porous polymer in the aqueous phase, and improves the inclusion adsorption performance and the adsorption process. P-MCD exhibited superior adsorption capacity and fast kinetics to MB. The maximum adsorption capacity of MB for P-MCD was 305.8 mg g -1, which is more than ß-CD modified Fe3O4 magnetic nanoparticles (Fe3O4@ß-CD). Moreover, the material had a short equilibrium time (5 min) for MB, high recovery and good recyclability (the adsorption efficiency was still above 86% after five repeated uses).


Subject(s)
Magnetics , Nanospheres , Water Pollutants, Chemical/chemistry , Water Purification/methods , beta-Cyclodextrins/chemistry , Adsorption , Kinetics , Polymers/chemistry , Porosity
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 205: 139-145, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30015019

ABSTRACT

In this work, we demonstrate a solvent-assisted structural transformation between two 3D metal-organic frameworks (MOFs) ([Zn4(α-bptc)2(H2O)3]n (1) → {[Zn2(α-bptc)(H2O)4]·(pra)}n (2)) (α-H4bptc = 2,3,3',4'-biphenyl tetra-carboxylic acid and pra = pyridin-2-amine) at room temperature by immersing complex 1 in a mother solution. The structural transformation involves not only solvent exchange but also the cleavage and formation of coordination bonds, which is confirmed by infrared spectroscopy, single-crystal X-ray diffraction analysis, powder X-ray diffraction patterns, and thermogravimetric analysis. Structural analyses revealed that significant modifications occurred during the transformation including the changes in lattice parameters, unit cell volume, space group, coordination number, secondary building units, and topological type. In the case of drastic structural transitions, significant changes in properties were also observed. Complex 2 displayed the interesting uptake and release of iodine with the changes in visible color, UV and fluorescence spectra, and fully reversible I2 uptake of 8.5 mg g-1, which further suggested about its future application as iodine absorbing material.

20.
PLoS One ; 13(12): e0208520, 2018.
Article in English | MEDLINE | ID: mdl-30596662

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a human pathogen responsible for diarrhea, hemorrhagic colitis and hemolytic uremic syndrome (HUS). To promote a comprehensive insight into the molecular basis of EHEC O157:H7 physiology and pathogenesis, the combined proteome of EHEC O157:H7 strains, Clade 8 and Clade 6 isolated from cattle in Argentina, and the standard EDL933 (clade 3) strain has been analyzed. From shotgun proteomic analysis a total of 2,644 non-redundant proteins of EHEC O157:H7 were identified, which correspond approximately 47% of the predicted proteome of this pathogen. Normalized spectrum abundance factor analysis was performed to estimate the protein abundance. According this analysis, 50 proteins were detected as the most abundant of EHEC O157:H7 proteome. COG analysis showed that the majority of the most abundant proteins are associated with translation processes. A KEGG enrichment analysis revealed that Glycolysis / Gluconeogenesis was the most significant pathway. On the other hand, the less abundant detected proteins are those related to DNA processes, cell respiration and prophage. Among the proteins that composed the Type III Secretion System, the most abundant protein was EspA. Altogether, the results show a subset of important proteins that contribute to physiology and pathogenicity of EHEC O157:H7.


Subject(s)
Escherichia coli O157/metabolism , Escherichia coli Proteins/analysis , Proteomics , Animals , Cattle , Chromatography, High Pressure Liquid , Escherichia coli O157/classification , Escherichia coli O157/isolation & purification , Humans , Metabolic Networks and Pathways/genetics , Proteome/analysis , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL