Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.603
Filter
1.
Neural Regen Res ; 20(1): 277-290, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-38767492

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202501000-00035/figure1/v/2024-05-14T021156Z/r/image-tiff Our previous study found that rat bone marrow-derived neural crest cells (acting as Schwann cell progenitors) have the potential to promote long-distance nerve repair. Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication. Nevertheless, the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear. To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves, we collected conditioned culture medium from hypoxia-pretreated neural crest cells, and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation. The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells. We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells. Subsequently, to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons, we used a microfluidic axonal dissociation model of sensory neurons in vitro, and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons, which was greatly dependent on loaded miR-21-5p. Finally, we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb, as well as muscle tissue morphology of the hind limbs, were obviously restored. These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p. miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome. This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves, and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.

2.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928413

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease that significantly impacts quality of life by disrupting CD4+ T cell immune homeostasis. The identification of a low-side-effect drug for RA treatment is urgently needed. Our previous study suggests that Trichinella spiralis paramyosin (Ts-Pmy) has immunomodulatory effects, but its potential effect on CD4+ T cell response in RA remains unclear. In this study, we used a murine model to investigate the role of rTs-Pmy in regulating CD4+ T cell differentiation in collagen-induced arthritis (CIA). Additionally, we assessed the impact of rTs-Pmy on CD4+ T cell differentiation towards the Th1 and Th17 phenotypes, which are associated with inflammatory responses in arthritis, using in vitro assays. The results demonstrated that rTs-Pmy administration reduced arthritis severity by inhibiting Th1 and Th17 response while enhancing Treg response. Prophylactic administration of Ts-Pmy showed superior efficacy on CIA compared to therapeutic administration. Furthermore, in vitro assays demonstrated that rTs-Pmy could inhibit the differentiation of CD4+ T cells into Th1 and Th17 while inducing the production of Tregs, suggesting a potential mechanism underlying its therapeutic effects. This study suggests that Ts-Pmy may ameliorate CIA by restoring the immune balance of CD4+ T cells and provides new insights into the mechanism through which helminth-derived proteins exert their effects on autoimmune diseases.


Subject(s)
Arthritis, Experimental , CD4-Positive T-Lymphocytes , Cell Differentiation , Th17 Cells , Trichinella spiralis , Tropomyosin , Animals , Trichinella spiralis/immunology , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Arthritis, Experimental/drug therapy , Mice , Cell Differentiation/drug effects , Tropomyosin/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Th1 Cells/immunology , Male , Helminth Proteins/pharmacology , Helminth Proteins/therapeutic use , Helminth Proteins/immunology , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/drug therapy , T-Lymphocytes, Regulatory/immunology , Disease Models, Animal , Mice, Inbred DBA
3.
Article in English | MEDLINE | ID: mdl-38900207

ABSTRACT

OBJECTIVE: Although supervised machine learning is popular for information extraction from clinical notes, creating large annotated datasets requires extensive domain expertise and is time-consuming. Meanwhile, large language models (LLMs) have demonstrated promising transfer learning capability. In this study, we explored whether recent LLMs could reduce the need for large-scale data annotations. MATERIALS AND METHODS: We curated a dataset of 769 breast cancer pathology reports, manually labeled with 12 categories, to compare zero-shot classification capability of the following LLMs: GPT-4, GPT-3.5, Starling, and ClinicalCamel, with task-specific supervised classification performance of 3 models: random forests, long short-term memory networks with attention (LSTM-Att), and the UCSF-BERT model. RESULTS: Across all 12 tasks, the GPT-4 model performed either significantly better than or as well as the best supervised model, LSTM-Att (average macro F1-score of 0.86 vs 0.75), with advantage on tasks with high label imbalance. Other LLMs demonstrated poor performance. Frequent GPT-4 error categories included incorrect inferences from multiple samples and from history, and complex task design, and several LSTM-Att errors were related to poor generalization to the test set. DISCUSSION: On tasks where large annotated datasets cannot be easily collected, LLMs can reduce the burden of data labeling. However, if the use of LLMs is prohibitive, the use of simpler models with large annotated datasets can provide comparable results. CONCLUSIONS: GPT-4 demonstrated the potential to speed up the execution of clinical NLP studies by reducing the need for large annotated datasets. This may increase the utilization of NLP-based variables and outcomes in clinical studies.

4.
Behav Brain Res ; : 115122, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942086

ABSTRACT

Stressful life event is closely associated with depression, thus strategies that blunt or prevent the negative effect stress on the brain might benefits for the treatment of depression. Although previous study showed the role of protein kinase R (PKR)-like ER kinase (PERK) in inflammation related depression, its involvement in the neuropathology of chronic stress induced depression is still unknown. We tried to explore whether block the PERK pathway would alleviate the animals' depression-like behavior induced by chronic restraint stress (CRS) and investigate the underlying mechanism. The CRS-exposed mice exhibited depression-like behavior, including anhedonia in the sucrose preference test (SPT), and increased immobility time in tail suspension test (TST) and forced swim test (FST). ISRIB administration for 2 weeks significantly improved the depression-like behavior in male mice exposed to CRS,which was manifested by markedly increasing the sucrose preference and reducing the immobility time in the FST and TST. However, we observed that exposure to the same dose of ISRIB in CRS female mice only showed improved anhedonia-like deficits,leaving un-altered improvement in the FST and TST. Mechanically, we found thatISRIB reversed the hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, indicatingby decreased levels of serum corticosterone, reduced hippocampal glucocorticoidreceptor (GR) expression and expression of FosB in hypothalamic paraventricularnucleus (PVN), which was accompanied by preserved hippocampal neurogenesis. Thepresent findings further expand the potential role of ER stress in depression andprovide important details for a therapeutic path forward for PERK inhibitors in mood disorders.

5.
Food Chem ; 457: 140130, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38943917

ABSTRACT

Comparative proteomics and non-target metabolomics, together with physiological and microstructural analyses of wheat grains (at 15, 20, 25, and 30 days after anthesis) from two different quality wheat varieties (Gaoyou 5766 (strong-gluten) and Zhoumai 18) were performed to illustrate the grain filling material dynamics and to search for quality control genes. The differential expressions of 1541 proteins and 406 metabolites were found. They were mostly engaged in protein metabolism, stress/defense, energy metabolism, and amino acid metabolism, and the metabolism of stored proteins and carbohydrates was the major focus of the latter stages. The core proteins and metabolites in the growth process were identified, and the candidate genes for quality differences were screened. In conclusion, this study offers a molecular explanation for the establishment of wheat quality, and it aids in our understanding of the intricate metabolic network between different qualities of wheat at the filling stage.

6.
Waste Manag ; 186: 214-225, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38936305

ABSTRACT

Passive methane oxidation biosystems (PMOBs) are developed as an innovative and cost-effective solution to reduce methane (CH4) emissions from municipal solid waste landfills. A PMOB consists of a methane oxidation layer (MOL) and an underlying gas distribution layer (GDL). The length of unrestricted gas migration (LUGM) has been recently proposed as the design criterion for PMOBs where the LUGM is calculated as the horizontal length along the MOL-GDL interface with the volumetric gas content (θa) exceeding the threshold volumetric gas content (θa,occ). This paper examined water and gas migration within three PMOBs with different MOL-GDL interfaces subject to precipitation and evaporation using verified numerical models. The results show that the use of a single-phase flow model underestimates the LUGM values of the PMOB for heavy precipitation events, and a two-phase flow model should be used to calculate both the LUGM and the total gas mass flow rate into the MOL when designing PMOBs. Both zig-zag and trapezoidal MOL-GDL interfaces can redistribute the gas mass flow rate at the MOL-GDL interface, while the trapezoidal MOL-GDL interface slightly outperforms the zig-zag MOL-GDL interface for enhancing the total gas mass flow rate into the MOL when comparing with the planar MOL-GDL interface. The zig-zag and trapezoidal MOL-GDL interfaces allow gas migration in the upper part of each PMOB segment even when the lower part of each PMOB segment was filled with water, and thus have a potential to minimize hotspot formation.

7.
Int J Biol Macromol ; 274(Pt 1): 133341, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908621

ABSTRACT

Biomass recalcitrance, a key challenge in biomass utilization, is closely linked to the architectural composition and cross-linkages of molecules within cell walls. With three bamboo species investigated, this study aims to elucidate the inherent molecular-scale structural differences between bamboo fibers and parenchyma cells through a systematic chemical extraction and structural characterization of isolated hemicelluloses, lignin, and lignin-carbohydrate complexes (LCC). We observed that parenchyma cells exhibit superior alkaline extractability compared to fibers. Additionally, we identified the hemicelluloses in parenchyma cells as L-arabino-4-O-methyl-D-glucurono-D-xylan, displaying a highly branched structure, while that in fibers is L-arabino-D-xylan. Furthermore, the parenchyma cell lignin exhibited a higher syringyl-to-guaiacyl (S/G) ratio and ß-O-4 linkage content compared to fibers, whereas fibers contain more carbon­carbon linkages including ß-ß, ß-5, and ß-1. This notable structural difference suggests a denser and more stable lignin in bamboo fibers. Importantly, we found that LCC in parenchyma cells predominantly comprises γ-ester linkages, which exhibit an alkaline-unstable nature. In contrast, fibers predominantly contain phenyl glycoside linkages, characterized by their alkaline-stable nature. These findings were observed for all the tested bamboo species, indicating the conclusions should be also valid for other bamboo species, suggesting the competitiveness of bamboo parenchyma cells as a valuable biofuel feedstock.

8.
Chem Biol Interact ; 398: 111113, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908813

ABSTRACT

Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, for which targeted therapy regimens are lacking. The traditional Chinese medicine Menispermum dauricum DC (M. dauricum) and its compounds have been reported to have antitumor activity against various cancers; however, their anti-TNBC activity is unknown. In this work, dauricine and N-desmethyldauricine from M. dauricum were separated and identified to have anti-TNBC via a multi-component bioactivity and structure-guided method. The cell counting kit 8 assay showed that dauricine and N-desmethyldauricine inhibited the proliferation of four tested TNBC cell lines, with half maximal inhibitory concentration values ranging from 5.01 µM to 13.16 µM. Further research suggested that N-desmethyldauricine induced cell apoptosis, arrested cell cycle progression in the G0/G1 phase, and inhibited cell migration. Western blot analysis revealed that the proapoptotic protein cleaved-poly-ADP-ribose polymerase 1 was upregulated, and the G0/G1 phase-related proteins cyclin-dependent kinase 2 and cyclin D1 and the migration-related protein matrix metallopeptidase 9 were downregulated. Furthermore, N-desmethyldauricine decreased the protein expression of p65, an important subunit of nuclear factor kappa-beta (NF-κB). Moreover, an antiproliferation assay of three-dimensional (3D) tumor spheroids showed that N-desmethyldauricine diminished cell‒cell adhesion and suppressed the growth of TNBC 3D spheroids. Taken together, these findings indicate that N-desmethyldauricine inhibited the proliferation of TNBC cells and decreased the expression of p65 in the NF-κB pathway.

9.
Adv Mater ; : e2405458, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839062

ABSTRACT

Manganese (Mn)-based Prussian blue analogs (PBAs) are of great interest as a prospective cathode material for sodium-ion batteries (SIBs) due to their high redox potential, easy synthesis, and low cost. However, the Jahn-Teller effect and low electrical conductivity of Mn-based PBA cause poor structure stability and unsatisfactory performance during the cycling. Herein, a novel nickel- and copper-codoped K2Mn[Fe(CN)6] cathode is developed via a simple coprecipitation strategy. The doping elements improve the electrical conductivity of Mn-based PBA by reducing the bandgap, as well as suppress the Jahn-Teller effect by stabilizing the framework, as verified by the density functional theory calculations. Simultaneously, the substitution of sodium with potassium in the lattice is beneficial for filling vacancies in the PBA framework, leading to higher average operating voltages and superior structural stability. As a result, the as-prepared Mn-based cathode exhibits excellent reversible capacity (116.0 mAh g-1 at 0.01 A g-1) and superior cycling stability (81.8% capacity retention over 500 cycles at 0.1 A g-1). This work provides a profitable doping strategy to inhibit the Jahn-Teller structural deformation for designing stable cathode material of SIBs.

10.
World J Gastroenterol ; 30(20): 2638-2656, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38855150

ABSTRACT

As a highly invasive carcinoma, esophageal cancer (EC) was the eighth most prevalent malignancy and the sixth leading cause of cancer-related death worldwide in 2020. Esophageal squamous cell carcinoma (ESCC) is the major histological subtype of EC, and its incidence and mortality rates are decreasing globally. Due to the lack of specific early symptoms, ESCC patients are usually diagnosed with advanced-stage disease with a poor prognosis, and the incidence and mortality rates are still high in many countries, especially in China. Therefore, enormous challenges still exist in the management of ESCC, and novel strategies are urgently needed to further decrease the incidence and mortality rates of ESCC. Although the key molecular mechanisms underlying ESCC pathogenesis have not been fully elucidated, certain promising biomarkers are being investigated to facilitate clinical decision-making. With the advent and advancement of high-throughput technologies, such as genomics, proteomics and metabolomics, valuable biomarkers with high sensitivity, specificity and stability could be identified for ESCC. Herein, we aimed to determine the epidemiological features of ESCC in different regions of the world, especially in China, and focused on novel molecular biomarkers associated with ESCC screening, early diagnosis and prognosis prediction.


Subject(s)
Biomarkers, Tumor , Early Detection of Cancer , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/epidemiology , Esophageal Squamous Cell Carcinoma/diagnosis , Esophageal Squamous Cell Carcinoma/mortality , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Neoplasms/epidemiology , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/mortality , Esophageal Neoplasms/pathology , Prognosis , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Early Detection of Cancer/methods , China/epidemiology , Incidence , Risk Factors
11.
Carbohydr Polym ; 339: 122261, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823925

ABSTRACT

Understanding the distribution and accessibility of polymers within plant cell walls is crucial for addressing biomass recalcitrance in lignocellulosic materials. In this work, Imaging Fourier Transform Infrared (FTIR) and Raman spectroscopy, coupled with targeted chemical treatments, were employed to investigate cell wall polymer distribution in two bamboo species at both tissue and cell wall levels. Tissue-level Imaging FTIR revealed significant disparities in the distribution and chemical activity of cell wall polymers between the fibrous sheath and fibrous strand. At the cell wall level, Imaging Raman spectroscopy delineated a distinct difference between the secondary wall and intercellular layer, with the latter containing higher levels of lignin, hydroxycinnamic acid (HCA), and xylan, and lower cellulose. Mild acidified sodium chlorite treatment led to partial removal of lignin, HCA, and xylan from the intercellular layer, albeit to a lesser extent than alkaline treatment, indicating susceptibility of these polymers to chemical treatment. In contrast, lignin in the secondary wall exhibited limited reactivity to acidified sodium chlorite but was slightly removed by alkaline treatment, suggesting stable chemical properties with slight alkaline intolerance. These findings provide valuable insights into the inherent design mechanism of plant cells and their efficient utilization.


Subject(s)
Cell Wall , Cellulose , Coumaric Acids , Lignin , Cell Wall/chemistry , Lignin/chemistry , Coumaric Acids/chemistry , Cellulose/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Xylans/chemistry , Spectrum Analysis, Raman/methods , Sasa/chemistry , Chlorides/chemistry , Polymers/chemistry
12.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119769, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838859

ABSTRACT

OBJECTIVE: Intervertebral disc degeneration (IVDD) is the leading cause of lower back pain (LBP). ß-arrestin 1 (ARRB1) is a multifunctional protein that regulates numerous pathological processes. The aim of this study was to investigate the role of ARRB1 in IVDD. METHODS: The expression of ARRB1 in nucleus pulposus (NP) of rats with IVDD was assayed. Next, rat nucleus pulposus cells (NPCs) were infected with lentiviruses containing shArrb1 (LV-shArrb1) and overexpressing Arrb1 (LV-oeArrb1). The roles of Arrb1 in serum-deprived NPCs were investigated by measuring apoptosis, extracellular matrix degradation, and autophagic flux. For experiments in vivo, LV-oeArrb1 lentivirus was injected into the NP tissues of IVDD rats to evaluate the effects of Arrb1 overexpression on NP. RESULTS: In the NP tissues of IVDD rats, ARRB1 and cleaved caspase-3 expression increased, and the ratio of LC3II/LC3I protein expression was upregulated. Arrb1 knockdown aggravated extracellular matrix degradation, cellular apoptosis, and impairment of autophagic flux in rat NPCs under serum-deprived conditions, whereas Arrb1 overexpression significantly reversed these effects. ARRB1 interacted with Beclin 1, and Arrb1 knockdown suppressed the formation of the Beclin1-PIK3C3 core complex. The autophagy inhibitor 3-methyladenine (3-MA) offset the protective effects of Arrb1 overexpression in serum-deprived NPCs. Furthermore, Arrb1 overexpression inhibited apoptosis and extracellular matrix degradation, promoted autophagy in NP, and delayed the development of IVDD in rats. CONCLUSION: ARRB1 prevents extracellular matrix degradation and apoptosis of NPCs by upregulating autophagy and ameliorating IVDD progression, presenting an innovative strategy for the treatment of IVDD.

13.
Physiol Rep ; 12(11): e16057, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825580

ABSTRACT

The bronchoalveolar organoid (BAO) model is increasingly acknowledged as an ex-vivo platform that accurately emulates the structural and functional attributes of proximal airway tissue. The transition from bronchoalveolar progenitor cells to alveolar organoids is a common event during the generation of BAOs. However, there is a pressing need for comprehensive analysis to elucidate the molecular distinctions characterizing the pre-differentiated and post-differentiated states within BAO models. This study established a murine BAO model and subsequently triggered its differentiation. Thereafter, a suite of multidimensional analytical procedures was employed, including the morphological recognition and examination of organoids utilizing an established artificial intelligence (AI) image tracking system, quantification of cellular composition, proteomic profiling and immunoblots of selected proteins. Our investigation yielded a detailed evaluation of the morphologic, cellular, and molecular variances demarcating the pre- and post-differentiation phases of the BAO model. We also identified of a potential molecular signature reflective of the observed morphological transformations. The integration of cutting-edge AI-driven image analysis with traditional cellular and molecular investigative methods has illuminated key features of this nascent model.


Subject(s)
Cell Differentiation , Organoids , Organoids/metabolism , Organoids/cytology , Animals , Mice , Pulmonary Alveoli/cytology , Pulmonary Alveoli/metabolism , Artificial Intelligence , Proteomics/methods , Mice, Inbred C57BL
14.
Int J Biol Macromol ; 273(Pt 2): 133161, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885863

ABSTRACT

Eucalyptus was pretreated with diethylene glycol catalyzed by 0.02 mol/L CrCl3 for 10 min, resulting in 91 % delignification and 98 % cellulose recovery, with trace fermentation inhibitors generated. After the mild pretreatment, the accessibility and affinity of cellulase to eucalyptus was enhanced, especially since enzyme adsorption rate increased by 1.6-fold. Therefore, glucose yield of pretreated eucalyptus was 7.9-fold higher than that of untreated eucalyptus after hydrolyzed 48 h, in which the maximum glucose concentration reached 62 g/L from eucalyptus by adding Tween 80. According to the characterization analysis, the structure of the eucalyptus lignin-carbohydrate complexes structure was destroyed during the pretreatment, while lignin fragments was likely reacted with diethylene glycol to form the stabilized aromatic ethers. Moreover, the extracted Deg-lignin exhibited better performances than commercial alkali lignin such as higher fluorescence intensity, less negative surface charge, and lower particle size. The mild pretreatment method with diethylene glycol and CrCl3 provided a promising approach for co-production of fermentable sugars and high activity lignin from lignocellulosic biomass.

15.
Phytochemistry ; 225: 114186, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878944

ABSTRACT

The ethanol extract of the whole plant of Delphinium trichophorum Franch was subjected to a phytochemical study, leading to the isolation of ten unprecedented diterpenoid alkaloids, including nine delnudine-type C20-diterpenoid alkaloids named trichophodines A-I and one kusnezoline-type C20-diterpenoid alkaloid named trichophozine A. Additionally, seven known compounds were also identified. Their structures were elucidated on the basis of extensive spectroscopic analysis, including HSQC, HMBC, 1H-1H COSY, NOESY and X-ray crystallographic analysis. Most isolated compounds were screened for inhibitory activities against LPS-induced NO production in RAW 264.7 macrophage cells and acetylcholinesterase inhibitory effects. Guan-fu base V exhibited potent inhibitory activity against acetylcholinesterase, demonstrating an inhibitory rate of 53.81% at a concentration of 40 µM.

16.
ACS Infect Dis ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38873897

ABSTRACT

Nonenveloped viruses employ unique entry mechanisms to breach and infect host cells. Understanding these mechanisms is crucial for developing antiviral strategies. Prevailing perspective suggests that nonenveloped viruses release membrane pore-forming peptides to breach host membranes. However, the precise involvement of the viral capsid in this entry remains elusive. Our study presents direct observations elucidating the dynamically distinctive steps through which metastable reovirus capsids disrupt host lipid membranes as they uncoat into partially hydrophobic intermediate particles. Using both live cells and model membrane systems, our key finding is that reovirus capsids actively deform and permeabilize lipid membranes in a cholesterol-dependent process. Unlike membrane pore-forming peptides, these metastable viral capsids induce more extensive membrane perturbations, including budding, bridging between adjacent membranes, and complete rupture. Notably, cholesterol enhances subviral particle adsorption, resulting in the formation of pores equivalent to the capsid size. This cholesterol dependence is attributed to the lipid condensing effect, particularly prominent at an intermediate cholesterol level. Furthermore, our results reveal a positive correlation between membrane disruption extent and efficiency of viral variants in establishing infection. This study unveils the crucial role of capsid-lipid interaction in nonenveloped virus entry, providing new insights into how cholesterol homeostasis influences virus infection dynamics.

17.
Signal Transduct Target Ther ; 9(1): 158, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862461

ABSTRACT

Cell membrane-camouflaged nanoparticles possess inherent advantages derived from their membrane structure and surface antigens, including prolonged circulation in the bloodstream, specific cell recognition and targeting capabilities, and potential for immunotherapy. Herein, we introduce a cell membrane biomimetic nanodrug platform termed MPB-3BP@CM NPs. Comprising microporous Prussian blue nanoparticles (MPB NPs) serving as both a photothermal sensitizer and carrier for 3-bromopyruvate (3BP), these nanoparticles are cloaked in a genetically programmable cell membrane displaying variants of signal regulatory protein α (SIRPα) with enhanced affinity to CD47. As a result, MPB-3BP@CM NPs inherit the characteristics of the original cell membrane, exhibiting an extended circulation time in the bloodstream and effectively targeting CD47 on the cytomembrane of colorectal cancer (CRC) cells. Notably, blocking CD47 with MPB-3BP@CM NPs enhances the phagocytosis of CRC cells by macrophages. Additionally, 3BP, an inhibitor of hexokinase II (HK2), suppresses glycolysis, leading to a reduction in adenosine triphosphate (ATP) levels and lactate production. Besides, it promotes the polarization of tumor-associated macrophages (TAMs) towards an anti-tumor M1 phenotype. Furthermore, integration with MPB NPs-mediated photothermal therapy (PTT) enhances the therapeutic efficacy against tumors. These advantages make MPB-3BP@CM NPs an attractive platform for the future development of innovative therapeutic approaches for CRC. Concurrently, it introduces a universal approach for engineering disease-tailored cell membranes for tumor therapy.


Subject(s)
CD47 Antigen , Cell Membrane , Colorectal Neoplasms , Nanoparticles , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Nanoparticles/chemistry , Humans , CD47 Antigen/genetics , Mice , Cell Membrane/metabolism , Cell Membrane/genetics , Animals , Pyruvates/chemistry , Pyruvates/pharmacology , Hexokinase/genetics , Cell Line, Tumor , Macrophages/metabolism , Macrophages/drug effects , Ferrocyanides
18.
Eur J Med Res ; 29(1): 343, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902822

ABSTRACT

As a hepatotropic virus, hepatitis B virus (HBV) can establish a persistent chronic infection in the liver, termed, chronic hepatitis B (CHB), which causes a series of liver-related complications, including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). HCC with HBV infection has a significantly increased morbidity and mortality, whereas it could be preventable. The current goal of antiviral therapy for HBV infection is to decrease CHB-related morbidity and mortality, and achieve sustained suppression of virus replication, which is known as a functional or immunological cure. The natural history of chronic HBV infection includes four immune phases: the immune-tolerant phase, immune-active phase, inactive phase, and reactivation phase. However, many CHB patients do not fit into any of these defined phases and are regarded as indeterminate. A large proportion of indeterminate patients are only treated with dynamic monitoring rather than recommended antiviral therapy, mainly due to the lack of definite guidelines. However, many of these patients may gradually have significant liver histopathological changes during disease progression. Recent studies have focused on the prevalence, progression, and carcinogenicity of indeterminate CHB, and more attention has been given to the prevention, detection, and treatment for these patients. Herein, we discuss the latest understanding of the epidemiology, clinical characteristics, and therapeutic strategies of indeterminate CHB, to provide avenues for the management of these patients.


Subject(s)
Antiviral Agents , Hepatitis B virus , Hepatitis B, Chronic , Humans , Hepatitis B, Chronic/epidemiology , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/complications , Antiviral Agents/therapeutic use , Hepatitis B virus/pathogenicity , Hepatitis B virus/physiology , Liver Neoplasms/epidemiology , Liver Neoplasms/therapy , Liver Neoplasms/virology , Liver Neoplasms/etiology , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/virology , Liver Cirrhosis/epidemiology , Liver Cirrhosis/virology , Disease Progression
20.
J Med Virol ; 96(6): e29757, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899432

ABSTRACT

No effective treatments can ameliorate symptoms of long COVID patients. Our study assessed the safety and efficacy of human umbilical cord-derived mesenchymal stem cells (UC-MSCs) in the treatment of long COVID patients. Ten long COVID patients were enrolled and received intravenous infusions of UC-MSCs on Days 0, 7, and 14. Adverse events and clinical symptoms were recorded, and chest-high-resolution CT (HRCT) images and laboratory parameters were analyzed. During UC-MSCs treatment and follow-up, we did not observe serious adverse events, the symptoms of long COVID patients were significantly relieved in a short time, especially sleep difficulty, depression or anxiety, memory issues, and so forth, and the lung lesions were also repaired. The routine laboratory parameters did not exhibit any significant abnormalities following UC-MSCs transplantation (UMSCT). The proportion of regulatory T cells gradually increased, but it was not statistically significant until 12 months. The proportion of naive B cells was elevated, while memory B cells, class-switched B-cells, and nonswitched B-cells decreased at 1 month after infusion. Additionally, we observed a transient elevation in circulating interleukin (IL)-6 after UMSCT, while tumor necrosis factor (TNF)-α, IL-17A, and IL-10 showed no significant changes. The levels of circulating immunoglobulin (Ig) M increased significantly at month 2, while IgA increased significantly at month 6. Furthermore, the SARS-CoV-2 IgG levels remained consistently high in all patients at Month 6, and there was no significant decrease during the subsequent 12-month follow-up. UMSCT was safe and tolerable in long COVID patients. It showed potential in alleviating long COVID symptoms and improving interstitial lung lesions.


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Umbilical Cord , Humans , COVID-19/therapy , COVID-19/immunology , Mesenchymal Stem Cell Transplantation/methods , Male , Female , Middle Aged , Umbilical Cord/cytology , Mesenchymal Stem Cells , Aged , Treatment Outcome , Adult , SARS-CoV-2 , T-Lymphocytes, Regulatory/immunology , B-Lymphocytes/immunology , Interleukin-6/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...