Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters











Publication year range
1.
Environ Pollut ; 361: 124856, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39214445

ABSTRACT

As an alternative fuel, bio-waste coconut shells have shown promise in reducing pollution during the co-combustion process. In this study, a novel metal-mineral adsorbent, Ca-Al (Ca5Al6O14), was prepared and physically (ultrasonic) and chemically (ethylene glycol) modified to enhance its adsorption properties. Thermal adsorption experiments investigated the effect of the adsorbents on the fixation of six heavy metals (HMs): Cr, Cu, Mn, Ni, Pb, and Zn. XRD, SEM, BET, and XPS were used to analyze the adsorbents and the adsorption mechanism was investigated by combining lattice oxygen concentration and Factsage simulation calculations. The ecological risk assessment of heavy metals was used to comprehensively evaluate the fixation effects of the three Ca-Al adsorbents at different additive levels. The results showed that the modification significantly changed the morphological characteristics and oxygen activity of the Ca-Al adsorbents, increased the lattice oxygen and chemisorbed oxygen concentration, and laid the foundation for promoting the chemisorption process in the fixation of heavy metals. In combination with the Er (environmental risk factors), adding all three adsorbents reduced Ri (Risk index). Among them, Ca-Al (EG) at 3% had the best effect on Ri. 3% Ca-Al (EG) reduced the Er value of Ni by 49.02%. 5% Ca-Al (EG) reduced the Er value of Cr by 86.01%. 5% Ca-Al (UM) had the best effect on Mn, with a reduction of 46.13%. The addition of 10% Ca-Al (UM) reduced Er of Ni by 50.43%. Considering the practical application in coal-fired power plants, Ca-Al(EG), which exhibits a higher fixation rate at small additions, is more suitable.

2.
Environ Sci Pollut Res Int ; 31(19): 28494-28506, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561529

ABSTRACT

Porous carbon generated from biomass has a rich pore structure, is inexpensive, and has a lot of promise for use as a carbon material for energy storage devices. In this work, nitrogen-doped porous carbon was prepared by co-pyrolysis using bagasse as the precursor and chlorella as the nitrogen source. ZnCl2 acts as both an activator and a nitrogen fixer during activation to generate pores and reduce nitrogen loss. The thermal weight loss experiments showed that the pyrolysis temperatures of bagasse and chlorella overlap, which created the possibility for the synthesis of nitrogen-rich biochar. The optimum sample (ZBC@C-5) possessed a surface area of 1508 m2g-1 with abundant nitrogen-containing functional groups. ZBC@C-5 in the three-electrode system exhibited 244.1F/g at 0.5A/g, which was extremely close to ZBC@M made with melamine as the nitrogen source. This provides new opportunities for the use of low-cost nitrogen sources. Furthermore, the devices exhibit better voltage retention (39%) and capacitance retention (96.3%). The goal of this research is to find a low cost, and effective method for creating nitrogen-doped porous carbon materials with better electrochemical performance for highly valuable applications using bagasse and chlorella.


Subject(s)
Biomass , Carbon , Chlorella vulgaris , Nitrogen , Pyrolysis , Triazines , Nitrogen/chemistry , Carbon/chemistry , Porosity , Triazines/chemistry , Cellulose/chemistry
3.
Environ Sci Pollut Res Int ; 31(10): 15759-15769, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38305973

ABSTRACT

In this work, chili straw (CS) was pretreated by microwave at 250 W, 406 W, 567 W, and 700 W. The pyrolysis characteristics, kinetics, thermodynamic parameters, and solid reaction mechanism were investigated. The maximum weight loss rate increases from - 24.72%/°C at P0 to - 28.01%/°C at P700 after microwave pretreatment, and the residual mass decreases from 31.81 at P0 to 26.71% at P700. In addition, microwave pretreatment leads to a decrease in activation energy, ∆H, and ∆G at the end of the pyrolysis (α > 0.7). The solid reaction mechanism of CS pyrolysis is revealed by the Z-master plots method, with un-pretreated CS conforming to P2, D4, F3/2, and F3, respectively. Microwave pretreatment changes the solid reaction mechanism mainly in the third stage, when α = 0.8, the mechanism function changes from f(α) = (1 - α)3 at P0 to f(α) = (1 - α) at P700, and the number of reaction order is reduced, which is profitable for CS pyrolysis.


Subject(s)
Microwaves , Pyrolysis , Hot Temperature , Thermodynamics , Kinetics
4.
Bioresour Technol ; 360: 127520, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35760250

ABSTRACT

Microwave technology is utilized to prepare porous carbon from the chili straw pyrolysis residue in this study. As the pyrolysis temperature increases, the thermal stability of biochar is higher. The carbon speciation of the porous carbon PC500 is closest to that of graphite, and its inorganic-C reaches to 51.21%. Notably, the specific surface area of the activated porous carbon increases with increasing pyrolysis temperature, with a maximum value of 2768.52 m2/g for PC500. Further testing of the electrochemical properties of the porous carbon, PC500 possesses a high specific capacitance of 352F/g at 1 A/g while that of conventional heating is only 226.1F/g. The porous carbon prepared by microwave heating has better electrical properties compared to conventional heating, and the biochar obtained at higher pyrolysis temperature has a richer pore structure after activation.


Subject(s)
Carbon , Pyrolysis , Carbon/chemistry , Charcoal/chemistry , Microwaves , Porosity , Temperature
5.
J Mol Cell Cardiol ; 169: 57-70, 2022 08.
Article in English | MEDLINE | ID: mdl-35597127

ABSTRACT

Chemokine receptor CXCR4 plays a crucial role in leukocyte recruitment and inflammation regulation to influence tissue repair in ischemic diseases. Here we assessed the effect of CXCR4 expression in macrophages on angiogenesis in the ischemic hindlimb of a mouse. Inflammatory cells were increased in the ischemic muscles of hindlimb, and CXCR4 was highly expressed in the infiltrated macrophages but not in neutrophils. Myeloid-specific CXCR4 knockout attenuated macrophage infiltration and subsequent reduced inflammatory response in the ischemic hindlimb, accompanied with better blood reperfusion and higher capillary density as compared with that in LysM Cre+/- (Cre) mice. Similar outcomes were also observed in CRE mice whose bone marrow cells were replaced with those from CXCR4-deficient mice. Gene ontology cluster analysis reviewed that Decorin, a negative regulator of angiogenesis, was reduced in CXCR4-deficient macrophages. CXCR4-deficient macrophages were less inducible into M1 phase by lipopolysaccharide and more favorable for M2 polarization under oxygen/glucose deprivation condition. Enhanced autophagy was detected in CXCR4-deficient macrophages, which was associated with less expression of both Decorin and the inflammatory cytokines. In summary, myeloid-specific CXCR4 deficiency reduced monocyte infiltration and the secretion of inflammatory cytokines and Decorin from macrophages, thus blunting inflammation response and promoting angiogenesis in the ischemic hindlimb.


Subject(s)
Ischemia , Macrophages , Receptors, CXCR4/metabolism , Animals , Autophagy , Cytokines/metabolism , Decorin/metabolism , Hindlimb/blood supply , Inflammation/metabolism , Ischemia/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic/metabolism
6.
Int J Biol Sci ; 18(3): 1271-1287, 2022.
Article in English | MEDLINE | ID: mdl-35173552

ABSTRACT

Rationale: Heart failure with preserved ejection fraction (HFpEF) can arise from hypertension-induced cardiac remodeling. Monocyte/macrophage accumulation and inflammation are crucial elements in the pathogenesis of hypertension-induced cardiac remodeling. The C-X-C chemokine receptor 4 (CXCR4) is a critical regulator of the macrophage-mediated immune response. Nevertheless, the contribution of CXCR4 to macrophage phenotype and function during the progression of HFpEF remains unclear. Herein, we aimed to determine the role of macrophagic CXCR4 in heart failure with preserved ejection fraction (HFpEF). Methods: As a HFpEF model, wild type mice and myeloid-specific CXCR4 deficiency mice were subjected to pressure overload for 30 days to assess the function of macrophagic CXCR4 on cardiac function. Medium from macrophages was used to treat cardiac fibroblasts to study macrophage-to-fibroblast signaling. Results: We found circulatory CXCR4+ immune cells, mainly monocytes, markedly increased in HFpEF patients with hypertension. In the experimental HFpEF mice model, macrophages but not neutrophils represent the main infiltrating inflammatory cells in the heart, abundantly expressing CXCR4. Myeloid-specific CXCR4 deficient impeded macrophage infiltration and inflammatory response in the heart of HFpEF mice, thus ameliorating cardiac fibrosis and improving cardiac diastolic function. Furthermore, transcriptomic profiling data revealed that CXCR4 loss in macrophages exhibited a decreased transcriptional signature associated with the regulation of inflammatory response. Notably, CXCR4 significantly augmented chemokine (C­X­C) motif ligand (CXCL3) expression, which at least partly contributed to fibrosis by promoting myofibroblast differentiation. Mechanistically, the increased production of pro-inflammatory cytokines in CXCR4 expressed macrophages could be attributed to the suppression of the peroxisome proliferator-activated receptor γ (PPARγ) activity. Conclusions: Collectively, our data supported that the infiltration of CXCR4+ macrophages in the heart exacerbates hypertension-induced diastolic function by promoting pro-inflammatory cytokines production and thus may serve as a potential therapeutic target for hypertension-induced HFpEF.


Subject(s)
Cardiomyopathies , Heart Failure , Hypertension , Animals , Cytokines , Fibroblasts/metabolism , Hypertension/complications , Macrophages/metabolism , Mice , Receptors, CXCR4/genetics , Receptors, CXCR4/therapeutic use , Stroke Volume/physiology , Ventricular Function, Left , Ventricular Remodeling/physiology
7.
Chemosphere ; 287(Pt 4): 132457, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34610373

ABSTRACT

Lead (Pb) is the most widely used anode in zinc (Zn) electrowinning and other metallurgical industries. The resource loss and environmental pollution caused by Pb anode corrosion are urgent problems to be solved. A γ-MnO2 precoated anode was prepared successfully to reduce the Pb-containing pollutant. The size effects with its controllable preparation on an industrial scale were studied. Severe nonuniform distribution of γ-MnO2 film was observed with curbing the reduction of anode slime only 68%, when anode size increased from lab to industry. Nonuniform rate (R) and average thickness (d) were found to be the key indicators to determine the film structure distribution and their performance differences, which were random and difficult to be controlled in scale-up size. However, a controllable industrial γ-MnO2 precoated anodes (IMPA) fabricated through optimized current density (J0) and electrodeposition time (t) in our developed film-forming system. Then, the long-term performances of two IMPA with different indicators (IMPA-1: R = 34%, d = 108 µm, IMPA-2: R = 23%, d = 55 µm) were compared with the industrial typical Pb-based anode (ITPA). Of the three different anodes, the optimized IMPA-2 displayed the best performance. Within 24 d of electrowinning cycle, the corrosion inhibition effect and the anode slime reduction rate for IMPA-2 improved by 56% and 30% than IMPA-1, and improved by 100% and 91% than ITPA. Furthermore, the mechanism analysis of size effect change showed that R of IMPA was contributed to the local gas holdup distribution along the anode. Controlled size effect of uniform oxide film will have a future application prospect for the sustainability of industry, which provides an important cleaner production of Zn electrowinning and related hydrometallurgy industries.


Subject(s)
Environmental Pollutants , Zinc , Electrodes , Lead , Manganese Compounds , Metallurgy , Oxides
8.
Bioresour Technol ; 319: 124191, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33022438

ABSTRACT

In this work, the kinetic behavior and products of the co-pyrolysis of chili straw (CS) and polypropylene (PP) of distinguishing conditions (blending ratios, addition of catalysts, and microwave pretreatment at different power) had been investigated. Co-pyrolysis effectively reduced the proportion of oxygenated composition in CS, and the Oxygenated composition of 5CS5PP decreased by 76.69% compared to CS. When HZSM-5 was added, the aromatic hydrocarbons in the product increased from 4.46% to 17.34%, and the final residual mass decreased from 12.75% to 7.71%, illustrating that HZSM-5 had a positive effect on co-pyrolysis. Compared with P0HZSM-5, the microwave pretreatment at a higher power level of 567 W reduced the oxygenated composition from 17.41% to 13.09%, and the weight loss peak in the first stage increased from -18.11%/min to -19.94%/min. At the same time, the activation energy decreased from 271.25 kJ/mol to 231.13 kJ/mol.


Subject(s)
Microwaves , Pyrolysis , Biofuels , Biomass , Catalysis , Hot Temperature , Hydrocarbons , Plant Oils , Polyphenols , Polypropylenes
9.
Bioresour Technol ; 312: 123592, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32531734

ABSTRACT

Catalytic co-pyrolysis of water hyacinth and scrap tire experiments were performed to evaluate the feasibility of improving the monocyclic aromatic hydrocarbons production. The production of monocyclic aromatic hydrocarbons increased from 5.31% (sole pyrolysis of water hyacinth) to 13.11% (co-pyrolysis with scrap tire). With use of zeolites, the highest production of monocyclic aromatic hydrocarbons can reach up to 69.18%. Comprehensive comparison on catalytic effects of HZSM-5 and multilamellar MFI nanosheets were provided. With the material to multilamellar MFI nanosheets ratios changes from 2:1 to 1:4, the production of monocyclic aromatic hydrocarbons increases significantly from 37.15-69.18%. The average production of monocyclic aromatic hydrocarbons produced by using multilamellar MFI nanosheets were 12.07% higher than that using HZSM-5, indicating the better performance of multilamellar MFI nanosheets in producing monocyclic aromatic hydrocarbons. This work provided a reference for the reuse of water hyacinth and scrap tire over multilamellar MFI nanosheets in energy field.


Subject(s)
Eichhornia , Pyrolysis , Biofuels , Biomass , Catalysis , Hot Temperature , Plant Oils , Polyphenols
10.
Bioresour Technol ; 297: 122419, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31761629

ABSTRACT

The influences of operating temperature, catalyst types and mixing ratios on co-pyrolysis of camellia shell (CS) and take-out solid waste (TSW) were investigated through orthogonal experiments design. The target was to gain more aliphatic hydrocarbons and monocyclic aromatic hydrocarbons (MAHs) and reduce the production of acids. According to orthogonal experiments results, higher temperature contributed to generate aliphatic hydrocarbons and inhibit formation of acids. Combined utilization of HZSM-5 and CaO was effective to obtain more MAHs and reduce acids. With the improvement of proportion of TSW, the yield of aliphatic hydrocarbons increased and acids decreased. The mixing ratio of CS and TSW was 3:7, 700 °C was chosen as operating temperature and combined utilization of HZSM-5 and CaO were identified. The apparent activation energy (Eave) of CS, TSW and their blends were calculated. 3CS7TSW had the lowest Eave which were 165.33 kJ/mol (by OFW) and 163.14 kJ/mol (by KAS).


Subject(s)
Camellia , Solid Waste , Catalysis , Hot Temperature , Kinetics , Pyrolysis
SELECTION OF CITATIONS
SEARCH DETAIL