Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
FASEB J ; 38(13): e23781, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38941212

ABSTRACT

Reactive astrocytes are important pathophysiologically and synthesize neurosteroids. We observed that LPS increased immunoreactive TLR4 and key steroidogenic enzymes in cortical astrocytes of rats and investigated whether corticosteroids are produced and mediate astrocytic TLR4-dependent innate immune responses. We found that LPS increased steroidogenic acute regulatory protein (StAR) and StAR-dependent aldosterone production in purified astrocytes. Both increases were blocked by the TLR4 antagonist TAK242. LPS also increased 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) and corticosterone production, and both were prevented by TAK242 and by siRNAs against 11ß-HSD1, StAR, or aldosterone synthase (CYP11B2). Knockdown of 11ß-HSD1, StAR, or CYP11B2 or blocking either mineralocorticoid receptors (MR) or glucocorticoid receptors (GR) prevented dephosphorylation of p-Ser9GSK-3ß, activation of NF-κB, and the GSK-3ß-dependent increases of C3, IL-1ß, and TNF-α caused by LPS. Exogenous aldosterone mimicked the MR- and GSK-3ß-dependent pro-inflammatory effects of LPS in astrocytes, but corticosterone did not. Supernatants from astrocytes treated with LPS reduced MAP2 and viability of cultured neurons except when astrocytic StAR or MR was inhibited. In adrenalectomized rats, intracerebroventricular injection of LPS increased astrocytic TLR4, StAR, CYP11B2, and 11ß-HSD1, NF-κB, C3 and IL-1ß, decreased astrocytic p-Ser9GSK-3ß in the cortex and was neurotoxic, except when spironolactone was co-injected, consistent with the in vitro results. LPS also activated NF-κB in some NeuN+ and CD11b+ cells in the cortex, and these effects were prevented by spironolactone. We conclude that intracrine aldosterone may be involved in the TLR4-dependent innate immune responses of astrocytes and can trigger paracrine effects by activating astrocytic MR/GSK-3ß/NF-κB signaling.


Subject(s)
Astrocytes , Glycogen Synthase Kinase 3 beta , Immunity, Innate , Lipopolysaccharides , Toll-Like Receptor 4 , Animals , Astrocytes/metabolism , Astrocytes/drug effects , Toll-Like Receptor 4/metabolism , Immunity, Innate/drug effects , Rats , Glycogen Synthase Kinase 3 beta/metabolism , Lipopolysaccharides/pharmacology , Adrenal Cortex Hormones/pharmacology , Rats, Sprague-Dawley , Cells, Cultured , Receptors, Mineralocorticoid/metabolism , Aldosterone/metabolism , Aldosterone/pharmacology , Male , NF-kappa B/metabolism , Glycogen Synthase Kinase 3/metabolism , Corticosterone/pharmacology
2.
Phytother Res ; 38(6): 2619-2640, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38488455

ABSTRACT

Salidroside, a principal bioactive component of Rhodiola crenulata, is neuroprotective across a wide time window in stroke models. We investigated whether salidroside induced neurogenesis after cerebral ischemia and aimed to identify its primary molecular targets. Rats, subjected to transient 2 h of middle cerebral artery occlusion (MCAO), received intraperitoneal vehicle or salidroside ± intracerebroventricular HSC70 inhibitor VER155008 or TrkB inhibitor ANA-12 for up to 7 days. MRI, behavioural tests, immunofluorescent staining and western blotting measured effects of salidroside. Reverse virtual docking and enzymatic assays assessed interaction of salidroside with purified recombinant HSC70. Salidroside dose-dependently decreased cerebral infarct volumes and neurological deficits, with maximal effects by 50 mg/kg/day. This dose also improved performance in beam balance and Morris water maze tests. Salidroside significantly increased BrdU+/nestin+, BrdU+/DCX+, BrdU+/NeuN+, BrdU-/NeuN+ and BDNF+ cells in the peri-infarct cortex, with less effect in striatum and no significant effect in the subventricular zone. Salidroside was predicted to bind with HSC70. Salidroside dose-dependently increased HSC70 ATPase and HSC70-dependent luciferase activities, but it did not activate HSP70. HSC70 immunoreactivity concentrated in the peri-infarct cortex and was unchanged by salidroside. However, VER155008 prevented salidroside-dependent increases of neurogenesis, BrdU-/NeuN+ cells and BDNF+ cells in peri-infarct cortex. Salidroside also increased BDNF protein and p-TrkB/TrkB ratio in ischemic brain, changes prevented by VER155008 and ANA-12, respectively. Additionally, ANA-12 blocked salidroside-dependent neurogenesis and increased BrdU-/NeuN+ cells in the peri-infarct cortex. Salidroside directly activates HSC70, thereby stimulating neurogenesis and neuroprotection via BDNF/TrkB signalling after MCAO. Salidroside and similar activators of HSC70 might provide clinical therapies for ischemic stroke.


Subject(s)
Brain Ischemia , Brain-Derived Neurotrophic Factor , Glucosides , HSC70 Heat-Shock Proteins , Infarction, Middle Cerebral Artery , Neurogenesis , Neuroprotective Agents , Phenols , Rats, Sprague-Dawley , Signal Transduction , Animals , Phenols/pharmacology , Phenols/chemistry , Glucosides/pharmacology , Neurogenesis/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Rats , Male , Infarction, Middle Cerebral Artery/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Brain Ischemia/drug therapy , HSC70 Heat-Shock Proteins/metabolism , Signal Transduction/drug effects , Doublecortin Protein , Rhodiola/chemistry , Receptor, trkB/metabolism , Disease Models, Animal , Azepines , Benzamides
SELECTION OF CITATIONS
SEARCH DETAIL