Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Anal Chem ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962829

ABSTRACT

In this work, we reported a cholesterol oxidase (Chox)-loaded platinum (Pt) nanozyme with the collaborative cascade nanoreactor for the construction of nanozyme-enzyme-linked immunosorbent assay (N-ELSA) models to realize high-throughput rapid evaluation of cancer markers. Considering the high specific surface area and manipulable surface sites, ZIF-8 was used as a substrate for natural enzyme and nanozyme loading. The constructed ZIF-8-Pt nanozyme platform exhibited efficient enzyme-like catalytic efficiency with a standard corrected activity of 60.59 U mg-1, which was 12 times higher than that of the ZIF-8 precursor, and highly efficient photothermal conversion efficiency (∼35.49%). In N-ELISA testing, developed multienzyme photothermal probes were immobilized in microplates based on antigen-antibody-specific reactions. Cholesterol was reacted in a cascade to reactive oxygen radicals, which attacked 3,3',5,5'-tetramethylbenzidine, causing it to oxidize and color change, thus exhibiting highly enhanced efficient photothermal properties. Systematic temperature evaluations were performed by a hand-held microelectromechanical system thermal imager under the excitation of an 808 nm surface light source to determine the cancer antigen 15-3 (CA15-3) profiles in the samples. Encouragingly, the temperature signal from the microwells increased with increasing CA15-3, with a linear range of 2 mU mL-1 to 100 U mL-1, considering it to be the sensor with the widest working range for visualization and portability available. This work provides new horizons for the development of efficient multienzyme portable colorimetric-photothermal platforms to help advance the community-based process of early cancer detection.

2.
J Transl Med ; 22(1): 525, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822329

ABSTRACT

Acetaminophen (APAP)-induced liver injury (AILI) is a pressing public health concern. Although evidence suggests that Bifidobacterium adolescentis (B. adolescentis) can be used to treat liver disease, it is unclear if it can prevent AILI. In this report, we prove that B. adolescentis significantly attenuated AILI in mice, as demonstrated through biochemical analysis, histopathology, and enzyme-linked immunosorbent assays. Based on untargeted metabolomics and in vitro cultures, we found that B. adolescentis generates microbial metabolite hypaphorine. Functionally, hypaphorine inhibits the inflammatory response and hepatic oxidative stress to alleviate AILI in mice. Transcriptomic analysis indicates that Cry1 expression is increased in APAP-treated mice after hypaphorine treatment. Overexpression of Cry1 by its stabilizer KL001 effectively mitigates liver damage arising from oxidative stress in APAP-treated mice. Using the gene expression omnibus (GEO) database, we verified that Cry1 gene expression was also decreased in patients with APAP-induced acute liver failure. In conclusion, this study demonstrates that B. adolescentis inhibits APAP-induced liver injury by generating hypaphorine, which subsequently upregulates Cry1 to decrease inflammation and oxidative stress.


Subject(s)
Acetaminophen , Bifidobacterium adolescentis , Chemical and Drug Induced Liver Injury , Liver , Mice, Inbred C57BL , Animals , Acetaminophen/adverse effects , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Liver/drug effects , Liver/pathology , Liver/metabolism , Male , Humans , Oxidative Stress/drug effects , Mice , Gene Expression Regulation/drug effects , Pyridines
3.
ACS Sens ; 9(5): 2684-2694, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38693685

ABSTRACT

Semiconductor-based photoelectrochemical (PEC) test protocols offer a viable solution for developing efficient individual health monitoring by converting light and chemical energy into electrical signals. However, slow reaction kinetics and electron-hole complexation at the interface limit their practical application. Here, we reported a triple-engineered CdS nanohierarchical structures (CdS NHs) modification scheme including morphology, defective states, and heterogeneous structure to achieve precise monitoring of the neurotransmitter dopamine (DA) in plasma and noninvasive body fluids. By precisely manipulating the Cd-S precursor, we achieved precise control over ternary CdS NHs and obtained well-defined layered self-assembled CdS NHs through a surface carbon treatment. The integration of defect states and the thin carbon layer effectively established carrier directional transfer pathways, thereby enhancing interface reaction sites and improving the conversion efficiency. The CdS NHs microelectrode fabricated demonstrated a remarkable negative response toward DA, thereby enabling the development of a miniature self-powered PEC device for precise quantification in human saliva. Additionally, the utilization of density functional theory calculations elucidated the structural characteristics of DA and the defect state of CdS, thus establishing crucial theoretical groundwork for optimizing the polymerization process of DA. The present study offers a potential engineering approach for developing high energy conversion efficiency PEC semiconductors as well as proposing a novel concept for designing sensitive testing strategies.


Subject(s)
Cadmium Compounds , Dopamine , Electrochemical Techniques , Nanostructures , Neurotransmitter Agents , Sulfides , Cadmium Compounds/chemistry , Electrochemical Techniques/methods , Dopamine/analysis , Dopamine/blood , Nanostructures/chemistry , Neurotransmitter Agents/analysis , Neurotransmitter Agents/blood , Humans , Sulfides/chemistry , Photochemical Processes , Saliva/chemistry , Density Functional Theory , Biosensing Techniques/methods , Semiconductors , Microelectrodes
4.
Anal Chem ; 96(21): 8740-8746, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38722256

ABSTRACT

Pressure and temperature, as common physical parameters, are important for monitoring human health. In contrast, single-mode monitoring is prone to causing experimental errors. Herein, we innovatively designed a dual-mode flexible sensing platform based on a platinum/zinc-meso-tetrakis(4-carboxyphenyl)porphyrin (Pt/Zn-TCPP) nanozyme for the quantitative monitoring of carcinoembryonic antigen (CEA) in biological fluids with pressure and temperature readouts. The Pt/Zn-TCPP nanozyme with catalytic and photothermal efficiencies was synthesized by means of integrating photosensitizers into porous materials. The flexible sensing system after the antigen-antibody reaction recognized the pressure using a flexible skin-like pressure sensor with a digital multimeter readout, whereas the temperature was acquired via the photoheat conversion system of the Pt/Zn-TCPP nanozyme under 808 nm near-infrared (NIR) irradiation using a portable NIR imaging camera on a smartphone. Meanwhile, the dual-mode flexible sensing system was carried out on a homemade three-dimensional (3D)-printed device. Results revealed that the developed dual-mode immunosensing platform could exhibit good pressure and temperature responses within the dynamic range of 0.5-100 ng mL-1 CEA with the detection limits of 0.24 and 0.13 ng mL-1, respectively. In addition, the pressure and temperature were sensed simultaneously without crosstalk interference. Importantly, the dual-mode flexible immunosensing system can effectively avoid false alarms during the measurement, thus providing great potential for simple and low-cost development for point-of-care testing.


Subject(s)
Carcinoembryonic Antigen , Platinum , Pressure , Temperature , Zinc , Platinum/chemistry , Immunoassay/methods , Zinc/chemistry , Carcinoembryonic Antigen/analysis , Humans , Porphyrins/chemistry , Nanostructures/chemistry , Limit of Detection
5.
Nutrition ; 124: 112428, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38663127

ABSTRACT

OBJECTIVES: This study aimed to explore the protective mechanism of chitosan oligosaccharide (COS) against lipopolysaccharide (LPS)-induced inflammatory responses in IEC-6 cells and dextran sodium sulfate (DSS)-induced colitis in mice. METHODS: The cell inflammation model was constructed by LPS in vitro and enteritis model by DSS in vivo. RESULTS: Following LPS exposure, IEC-6 cell proliferation significantly decreased, epithelial cell integrity was compromised, and TNF-α and IL-1ß levels were increased. However, COS pretreatment reversed these changes. In vivo, DSS-treated mice exhibited evident pathological alterations, including heightened inflammatory levels and significantly decreased expression of tight junction proteins and critical proteins in the Mitogen activated proteins kinase signaling pathway. Nevertheless, COS administration notably reduced inflammatory levels and increased the expression of tight junction proteins and key proteins in the Mitogen activated proteins kinase signaling pathway. CONCLUSIONS: Our findings suggest that COS safeguards gut barrier integrity by upregulating tight junction proteins through the ERK1/2 signaling pathway. Therefore, COS has emerged as a promising candidate for novel drug interventions against inflammatory bowel disease.


Subject(s)
Chitosan , Colitis , Dextran Sulfate , Lipopolysaccharides , MAP Kinase Signaling System , Oligosaccharides , Tight Junction Proteins , Up-Regulation , Animals , Chitosan/pharmacology , Tight Junction Proteins/metabolism , Oligosaccharides/pharmacology , Colitis/chemically induced , Colitis/metabolism , Colitis/drug therapy , Mice , Up-Regulation/drug effects , MAP Kinase Signaling System/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Tumor Necrosis Factor-alpha/metabolism , Disease Models, Animal , Cell Line , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Mice, Inbred C57BL , Rats
6.
Materials (Basel) ; 17(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38541413

ABSTRACT

This study focuses on exploring the effects of niobium (Nb)-microalloying on the properties of steel for ultra-high-strength bridge cables during hot-rolling processes. We employed a combination of dual-pass compression tests, stress-strain curve analysis, and Electron Backscatter Diffraction (EBSD) techniques to investigate the influence of Nb-microalloying on the static recrystallization behavior and grain size of the steel. The key findings reveal that Nb-microalloying effectively inhibits static recrystallization, particularly at higher temperatures, significantly reducing the volume fraction of recrystallized grains, resulting in a finer grain size and enhanced deformation resistance. Secondly, at a deformation temperature of 975 °C, Nb-containing steel exhibited finer grain sizes compared to Nb-free steel when held for 10 to 50 s; however, the grain size growth accelerated when the hold time exceeded 50 s, likely linked to the increased deformation resistance induced by Nb. Lastly, this research proposes optimal hot-rolling process parameters for new bridge cable steel, recommending specific finishing rolling temperatures and inter-pass times for both Nb-containing and Nb-free steels during the roughing and finishing stages. This study suggests optimal hot-rolling parameters for both Nb-containing and Nb-free steels, providing essential insights for improving hot-rolling and microalloying processes in high-carbon steels for bridge cables.

7.
Life (Basel) ; 14(3)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38541691

ABSTRACT

Although numerous studies have shown that the hypothalamic-pituitary-adrenal axis plays a vital role in the response to environmental stress by mediating the production of a series of hormones, the mechanism underlying these effects has not been elucidated. This study used proteomics techniques to investigate the differentially expressed proteins (DEPs) in the pituitary glands of pigs and to elucidate the potential changes in the immune-neuroendocrine system under heat stress (HS). In total, 2517 peptides corresponding to 205 proteins were detected. A comparison of the expression patterns between HSs and healthy controls revealed 56 DEPs, of which 31 were upregulated and 25 were downregulated. Ingenuity pathway analysis (IPA) was used to reveal the subcellular characteristics, functional pathways, regulatory networks, and upstream regulators of the identified proteins. The results showed that these differentially expressed proteins were involved in intercellular communication, interactions, apoptosis, nervous system development, functions, abnormalities and other functions, and in the regulatory network. Moreover, the upstream regulators of the differentially expressed proteins were mainly transcriptional regulators, hormones, and cytokines. Thus, the functional network and pathway analyses could provide insights into the complexity and dynamics of HS-host interactions and may accelerate our understanding of the mechanisms underlying HS.

8.
Anal Chem ; 96(12): 5014-5021, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38484042

ABSTRACT

Different from prevalent approaches such as immunological recognition, complementary base pairing, or enzymatic regulation in current photoelectrochemical (PEC) sensing, this study reported an excited-state intramolecular proton transfer (ESIPT)-driven photon-gating PEC sensor. The sensor is developed for the detection of CO-releasing molecule-3 (CORM-3) by modifying an ESIPT-switched organic fluorescent probe molecule (NDAA) onto the surface of a p-type semiconductor (BiOI). The NDAA can be excited and exhibit strong green fluorescence after responding with CORM-3, resulting in an electrode-interface photon competitive absorption effect due to the switch on ESIPT and considerably reducing the photocurrent signal. The experimental results revealed that the as-developed PEC sensor achieved good analytical performance with high selectivity and sensitivity, with a linear range of 0.01-1000 µM and a lower detection limit of 6.5 nM. This work demonstrates the great potential of the organic fluorescent probe molecule family in advancing PEC analysis. It is anticipated that our findings will stimulate the creation of diverse functional probes possessing distinctive characteristics for inventive PEC sensors.


Subject(s)
Nitrosamines , Organometallic Compounds , Protons , Fluorescent Dyes/chemistry
9.
Polymers (Basel) ; 16(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38475397

ABSTRACT

Exposure to vomitoxin (DON) can negatively impact the intestinal health of livestock and poultry, leading to compromised nutrient absorption and utilization, resulting in slowed growth and reduced production efficiency. In this study, we synthesized carbonated chitosan montmorillonite intercalation complexes (CCM) through solution precipitation. The successful formation of intercalation complexes was confirmed by examining functional groups and surface features using infrared spectroscopy and scanning electron microscopy. To assess the impact of CCM on DON-infected mice, we established an experimental mouse model of jejunal inflammation induced by DON infection. We analyzed the effects of CCM on blood biochemical and conventional indices, jejunal inflammatory factors, pathological changes, and the expression of proteins in the MAPK pathways in DON-infected mice. Our results indicate that CCM effectively mitigates the adverse effects of DON on growth performance, jejunal injury, and the inflammatory response in mice. CCM supplementation alleviated the negative effects of DON infection on growth performance and reduced intestinal inflammation in mice. Moreover, CCM supplementation successfully inhibited the activation of the mitogen-activated protein kinase (MAPK) signaling pathway induced by DON. These findings suggest that the mitigating effect of CCM on DON-induced inflammatory injury in the murine jejunum is closely linked to the regulation of the MAPK signaling pathway.

10.
J Phys Chem Lett ; 15(7): 1795-1801, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38329293

ABSTRACT

Two-dimensional (2D) materials have provided a fascinating platform for exploring novel multiferroics and emergent magnetoelectric coupling mechanisms. Here, a novel 2D asymmetric multiferroic based on Janus 2D multiferroic MXene-analogous oxynitrides (InTlNO2) is presented by using first-principles calculations. We find three inequivalent phases for InTlNO2, including two metallic phases (p1 and p2) and one semiconducting phase (p3) with a band gap of 0.88 eV. All phases are room-temperature multiferroics with different Curie temperatures, leading to tunability by phase transitions. We show that there is a 90° rotation of the magnetic anisotropy easy axis between p1 and p2, where p1 favors the in-plane and p2 the out-of-plane easy axis. Therefore, the magnetic anisotropy can be tuned by reversing the out-of-plane polarization. Our strategy provides a unique way toward strong magnetoelectric coupling and multistate memory.

11.
ACS Sens ; 9(3): 1447-1457, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38412069

ABSTRACT

Developing high-performance chemiresistive gas sensors with mechanical compliance for environmental or health-related biomarker monitoring has recently drawn increasing research attention. Among them, two-dimensional MXene materials hold great potential for room-temperature hazardous gas (e.g., NH3) monitoring regardless of the complicated fabrication process, insufficient 2D/3D flexibilities, and poor environmental sustainability. Herein, a Ti3C2Tx MXene/gelatin ink was developed for patterning electrodes through a facile spray coating. Particularly, the patterned Ti3C2Tx-based coating exhibited good adhesion on the paper substrate against repeated peeling-off and excellent mechanical flexibility against 1000 cyclic stretching. The porous morphology of the coating facilitated the NH3 sensing ability. As a result, the 2D kirigami-shaped NH3 sensor exhibited a good response of 7% to 50 ppm of NH3 with detectable concentrations ranging from 5-500 ppm, decent selectivity over interferences, etc., which could be well-maintained even at 50% stretched state. In addition, with the help of mechanically guided compressive buckling, 3D mesostructured MXene origamis could be obtained, holding promise for detecting the coming direction and height distribution of hazardous gas, e.g., the NH3. More importantly, the as-fabricated MXene/gelatin origami paper could be fully degraded in PBS/H2O2/cellulase solution within 19 days, demonstrating its potential as a high-performance, shape morphable, and environmentally friendly wearable gas sensor.


Subject(s)
Ammonia , Cellulase , Nitrites , Transition Elements , Gelatin , Hydrogen Peroxide
12.
BMC Biol ; 22(1): 13, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38273258

ABSTRACT

BACKGROUND: Single-nucleotide polymorphisms (SNPs) are the most widely used form of molecular genetic variation studies. As reference genomes and resequencing data sets expand exponentially, tools must be in place to call SNPs at a similar pace. The genome analysis toolkit (GATK) is one of the most widely used SNP calling software tools publicly available, but unfortunately, high-performance computing versions of this tool have yet to become widely available and affordable. RESULTS: Here we report an open-source high-performance computing genome variant calling workflow (HPC-GVCW) for GATK that can run on multiple computing platforms from supercomputers to desktop machines. We benchmarked HPC-GVCW on multiple crop species for performance and accuracy with comparable results with previously published reports (using GATK alone). Finally, we used HPC-GVCW in production mode to call SNPs on a "subpopulation aware" 16-genome rice reference panel with ~ 3000 resequenced rice accessions. The entire process took ~ 16 weeks and resulted in the identification of an average of 27.3 M SNPs/genome and the discovery of ~ 2.3 million novel SNPs that were not present in the flagship reference genome for rice (i.e., IRGSP RefSeq). CONCLUSIONS: This study developed an open-source pipeline (HPC-GVCW) to run GATK on HPC platforms, which significantly improved the speed at which SNPs can be called. The workflow is widely applicable as demonstrated successfully for four major crop species with genomes ranging in size from 400 Mb to 2.4 Gb. Using HPC-GVCW in production mode to call SNPs on a 25 multi-crop-reference genome data set produced over 1.1 billion SNPs that were publicly released for functional and breeding studies. For rice, many novel SNPs were identified and were found to reside within genes and open chromatin regions that are predicted to have functional consequences. Combined, our results demonstrate the usefulness of combining a high-performance SNP calling architecture solution with a subpopulation-aware reference genome panel for rapid SNP discovery and public deployment.


Subject(s)
Genome, Plant , Polymorphism, Single Nucleotide , Workflow , Plant Breeding , Software , High-Throughput Nucleotide Sequencing/methods
13.
Int J Biol Macromol ; 261(Pt 1): 129716, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38290624

ABSTRACT

In this study, soy protein isolate (SPI) and maltose (M) were employed as materials for the synthesis of a covalent compound denoted as SPI-M. The emulsion gel was prepared by transglutaminase (TGase) as catalyst, and its freeze-thaw stability was investigated. The occurrence of Maillard reaction was substantiated through SDS-PAGE. The analysis of spectroscopy showed that the structure of the modified protein was more stretched, changed in the direction of freeze-thaw stability. After three freeze-thaw cycles (FTC), it was observed that the water holding capacity of SPI-M, SPI/M mixture (SPI+M) and SPI emulsion gels exhibited reductions of 8.49 %, 16.85 %, and 20.26 %, respectively. Moreover, the soluble protein content also diminished by 13.92 %, 23.43 %, and 35.31 %, respectively. In comparison to unmodified SPI, SPI-M exhibited increase in gel hardness by 160 %, while elasticity, viscosity, chewability, and cohesion demonstrated reductions of 17.7 %, 23.3 %, 33.3 %, and 6.76 %, respectively. Concurrently, the SPI-M emulsion gel exhibited the most rapid gel formation kinetics. After FTCs, the gel elastic modulus (G') and viscosity modulus (G″) of SPI-M emulsion were the largest. DSC analysis underscored the more compact structure and heightened thermal stability of the SPI-M emulsion gel. SEM demonstrated that the SPI-M emulsion gel suffered the least damage following FTCs.


Subject(s)
Maltose , Soybean Proteins , Emulsions/chemistry , Soybean Proteins/chemistry , Transglutaminases , Gels/chemistry
14.
Small ; 20(16): e2309264, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38010948

ABSTRACT

In this work, sub-nanometer Co clusters anchored on porous nitrogen-doped carbon (C─N─Co NCs) are successfully prepared by high-temperature annealing and pre-fabricated template strategies for non-invasive sensing of clozapine (CLZ) as an efficient substrate adsorption and electrocatalyst. The introduction of Co sub-nanoclusters (Co NCs) provides enhanced electrochemical performance and better substrate adsorption potential compared to porous and nitrogen-doped carbon structures. Combined with ab initio calculations, it is found that the favorable CLZ catalytic performance with C─N─Co NCs is mainly attributed to possessing a more stable CLZ adsorption structure and lower conversion barriers of CLZ to oxidized state CLZ. An electrochemical sensor for CLZ detection is conceptualized with a wide operating range and high sensitivity, with monitoring capabilities validated in a variety of body fluid environments. Based on the developed CLZ sensing system, the CLZ correlation between blood and saliva and the accuracy of the sensor are investigated by the gold standard method and the rat model of drug administration, paving the way for non-invasive drug monitoring. This work provides new insights into the development of efficient electrocatalysts to enable drug therapy and administration monitoring in personalized healthcare systems.


Subject(s)
Antipsychotic Agents , Clozapine , Rats , Animals , Antipsychotic Agents/therapeutic use , Carbon/chemistry , Drug Monitoring , Nitrogen , Clozapine/chemistry , Clozapine/therapeutic use
15.
Small ; 20(16): e2308175, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38032163

ABSTRACT

The safe and efficient management of hazardous radioactive iodine is significant for nuclear waste reprocessing and environmental industries. A novel supramolecular framework compound based on cucurbit[8]uril (Q[8]) and 4-aminopyridine (4-AP) is reported in this paper. In the single crystal structure of Q[8]-(4-AP), two 4-AP molecules interact with the outer surface of Q[8] and the two other 4-AP molecules are encapsulated into the Q[8] cavity to form the self-assembly Q[8]-(4-AP). Iodine adsorption experiments show that the as-prepared Q[8]-(4-AP) not only has a high adsorption capacity (1.74 g· g-1) for iodine vapor but also can remove the iodine in the organic solvent and the aqueous solution with the removal efficiencies of 95% and 91%, respectively. The presence of a large number of hydrogen bonds between the iodine molecule and the absorbent, as seen in the single crystal structure of iodine-loaded Q[8]-(4-AP) (I2@Q[8]-(4-AP)), is thought to be responsible for the exceptional iodine adsorption capacity of the material. In addition, the adsorption-desorption tests reveal that the self-assembly material has no significant loss of iodine capture capacity after five cycles, indicating that it has sufficient reusability.

16.
Int J Biol Macromol ; 254(Pt 3): 127956, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37951451

ABSTRACT

Food protein-derived amyloid fibrils possess great untapped potential applications in food and other biomaterials. The objective of this report was to investigate the formation mechanism, structure and functional characterization of soy protein amyloid fibrils (SPF) through hydrolysis and heating (pH 2.0, 85 °C, 0-24 h) of soy protein isolate (SPI). Fibrillation growth analysis indicated polypeptide hydrolysis upon hydrolytic heating, and the amyloid fibrils were basically formed 8 h later. The microstructure of SPF was monitored by transmission electron microscopy and scanning electron microscopy, exhibiting change from an irregular spherical structure to a coiled, intertwined thread-like polymer. The secondary structures of SPI all changed drastically during the fibrillation process was characterized by Fourier transform infrared spectroscopy, which the α-helical and ß-turned content decreasing by 12.67 % and 5.07 %, respectively, and the content of ordered ß-folded structures increasing with heating time, finally increasing to 53.61 % at 24 h. The fluorescence intensity of the endogenous fluorescence spectra decreased and the maximum emission wavelength was red-shifted, suggesting that the fibrillation unfolded the protein structure, hydrolyzed and self-assembled into amyloid fibrils aggregates obscuring the aromatic amino acid residues. The emulsification activity, emulsion stability and viscosity of SPF improved with the increase in protein fibrillation.


Subject(s)
Amyloid , Soybean Proteins , Amyloid/chemistry , Soybean Proteins/chemistry , Protein Structure, Secondary , Microscopy, Electron, Transmission , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared
17.
Nanoscale ; 16(3): 1362-1370, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38131608

ABSTRACT

The unique magnetic properties of two-dimensional (2D) materials have demonstrated huge potential for applications in nanodevices and spintronics. In this work, we propose a new Kagome lattice, Co3X8 (X = Cl and Br), based on density functional theory (DFT) calculation. We find that Co/X in Co3X8 has spontaneous movement in the lattice, resulting in 156- and 12-phases of Co3X8 and diverse magnetic and electronic properties. We show that the magnetic and electronic properties of Co3X8 can be engineered by strain, and the magnetic properties of Co3X8 are highly related to the spontaneous movement of X. Moreover, the transmission property of 12-Co3X8 shows clear angle-dependent features due to the symmetry breaking as caused by the spontaneous movement of X. Our findings may provide not only a possible Kagome lattice with unique properties, but also a strategy for designing nanodevices and for spintronics.

18.
Front Biosci (Landmark Ed) ; 28(11): 316, 2023 11 29.
Article in English | MEDLINE | ID: mdl-38062811

ABSTRACT

BACKGROUND: Copine 1 (CPNE1) acts as a promoter in the progression of many kinds of cancers with the exception of pancreatic cancer (PC). This research is designed to probe the function of the CPNE1-tumor necrosis factor receptor-associated factor 2 (TRAF2) axis in PC. METHODS: In vivo and in vitro models of PC were constructed, and a series of biological function tests, including MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide], colony formation, flow cytometry, and immunohistochemistry, were performed. RESULTS: The level of CPNE1 elevated dramatically in PC cells. Downregulation of CPNE1in PC cells resulted in the inhibition of colony formation and proliferation. In addition, the silencing of CPNE1 induced the G1/S arrest and apoptosis in PC cells. Additionally, TRAF2 positively interacted with CPNE1 in PANC cells. CPNE1 silencing also inhibited the growth of tumors in in vivo mouse models. Functional experiments revealed that the anti-tumor effect of CPNE1 silencing was counteracted by TRAF2 overexpression, and the tumor-promoting effect of TRAF2 overexpression was reversed by CPNE1 silencing. CONCLUSIONS: In summary, our findings indicate that the silencing of the CPNE1-TRAF2 axis restrains PC development.


Subject(s)
Apoptosis , Pancreatic Neoplasms , Animals , Mice , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , TNF Receptor-Associated Factor 2/genetics , Humans
19.
Nurs Ethics ; : 9697330231222598, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38147009

ABSTRACT

AIM: To synthesize qualitative research on perspectives and understandings of Intensive Care Unit (ICU) patients, family members, and staff regarding respect and dignity in ICU, in order to explore the connotations and meanings of respect and dignity in ICU. DESIGN: A qualitative meta-synthesis. METHODS: The Chinese and English databases were systematically searched, including PubMed, Web of Science, CINAHL, Embase, Cochrane Library, CNKI, Wangfang Data, VIP, and CBM from each database's inception to July 22, 2023. Studies were critically appraised using the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Qualitative Research. Qualitative data were extracted, summarized, and meta-synthesized. (PROSPERO: CRD42023447218). RESULTS: A total of 9 studies from 6 countries were included in the meta-synthesis. Thirty-six main themes and 67 sub-themes were extracted, which were eventually integrated into 9 categories and 4 themes: (1) integrity of humanity; (2) autonomy; (3) equality; (4) environmental support. CONCLUSION: To maintain patient dignity, it is necessary to create an environment of respect within the ICU where healthcare professionals uphold the concept of preserving human integrity and respect patients' autonomy and equality. Healthcare professionals need to value the dignity of ICU patients and treat them as unique individuals during treatment and care. Hospital managers should also strive to create a respectful environment to provide environmental support for dignity care implementation.

20.
J Phys Condens Matter ; 36(6)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37813101

ABSTRACT

Recently, a new layered material, Mn3Si2Te6, was identified to be a semiconductor with nodal-line topological property and ferrimagnetic ground state. In this work, we propose a series of structures, M3Si2Te6(M = alkaline earth and transition metals), and systematically investigate their mechanical, magnetic and electronic properties, and the strain effect to enrich the family of the layered materials for practical applications. We find 13 stable M3Si2Te6, including 5 semiconductors (M = Ca, Sr, Fe, Ru and Os) and 8 metals (M = Sc, Ti, Nb, Ta, Cr, Mo, W and Tc). Two structures (M = Ti and Cr) are antiferromagnetic (AFM), while other structures are non-magnetic (NM). Similar to Mn3Si2Te6, the AFM structures exhibit magnetic anisotropy energies (MAEs) and semiconductors have anisotropic electron effective masses. We further show that compressions along thez-axis can effectively tune the electronic and magnetic properties, such as the semiconductor-metal and NM-AFM transition in Fe3Si2Te6, the two-fold degeneracy of the valence band maximums in Sr3Si2Te6, as well as the reduced MAE for all magnetic structures. These results demonstrate the diverse properties of the layered M3Si2Te6family and provide promising theoretical predictions for the future design of new layered materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...