Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 17: 1201169, 2023.
Article in English | MEDLINE | ID: mdl-37600013

ABSTRACT

Background: Intermittent energy restriction (IER) is an effective weight loss strategy. However, the accompanying changes in spontaneous neural activity are unclear, and the relationship among anthropometric measurements, biochemical indicators, and adipokines remains ambiguous. Methods: Thirty-five obese adults were recruited and received a 2-month IER intervention. Data were collected from anthropometric measurements, blood samples, and resting-state functional magnetic resonance imaging at four time points. The regional homogeneity (ReHo) method was used to explore the effects of the IER intervention. The relationships between the ReHo values of altered brain regions and changes in anthropometric measurements, biochemical indicators, and adipokines (leptin and adiponectin) were analyzed. Results: Results showed that IER significantly improved anthropometric measurements, biochemical indicators, and adipokine levels in the successful weight loss group. The IER intervention for weight loss was associated with a significant increase in ReHo in the bilateral lingual gyrus, left calcarine, and left postcentral gyrus and a significant decrease in the right middle temporal gyrus and right cerebellum (VIII). Follow-up analyses showed that the increase in ReHo values in the right LG had a significant positive correlation with a reduction in Three-factor Eating Questionnaire (TFEQ)-disinhibition and a significant negative correlation with an increase in TFEQ-cognitive control. Furthermore, the increase in ReHo values in the left calcarine had a significant positive correlation with the reduction in TFEQ-disinhibition. However, no significant difference in ReHo was observed in the failed weight loss group. Conclusion: Our study provides objective evidence that the IER intervention reshaped the ReHo of some brain regions in obese individuals, accompanied with improved anthropometric measurements, biochemical indicators, and adipokines. These results illustrated that the IER intervention for weight loss may act by decreasing the motivational drive to eat, reducing reward responses to food cues, and repairing damaged food-related self-control processes. These findings enhance our understanding of the neurobiological basis of IER for weight loss in obesity.

2.
Front Cell Infect Microbiol ; 13: 1269548, 2023.
Article in English | MEDLINE | ID: mdl-38173792

ABSTRACT

Objective: Intermittent energy restriction (IER) is an effective weight loss strategy. However, little is known about the dynamic effects of IER on the brain-gut-microbiome axis. Methods: In this study, a total of 25 obese individuals successfully lost weight after a 2-month IER intervention. FMRI was used to determine the activity of brain regions. Metagenomic sequencing was performed to identify differentially abundant gut microbes and pathways in from fecal samples. Results: Our results showed that IER longitudinally reduced the activity of obese-related brain regions at different timepoints, including the inferior frontal orbital gyrus in the cognitive control circuit, the putamen in the emotion and learning circuit, and the anterior cingulate cortex in the sensory circuit. IER longitudinally reduced E. coli abundance across multiple timepoints while elevating the abundance of obesity-related Faecalibacterium prausnitzii, Parabacteroides distasonis, and Bacterokles uniformis. Correlation analysis revealed longitudinally correlations between gut bacteria abundance alterations and brain activity changes. Conclusions: There was dynamical alteration of BGM axis (the communication of E. coli with specific brain regions) during the weight loss under the IER.


Subject(s)
Gastrointestinal Microbiome , Humans , Caloric Restriction/methods , Escherichia coli , Obesity , Weight Loss
3.
Brain Sci ; 12(8)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36009164

ABSTRACT

Visual encoding models based on deep neural networks (DNN) show good performance in predicting brain activity in low-level visual areas. However, due to the amount of neural data limitation, DNN-based visual encoding models are difficult to fit for high-level visual areas, resulting in insufficient encoding performance. The ventral stream suggests that higher visual areas receive information from lower visual areas, which is not fully reflected in the current encoding models. In the present study, we propose a novel visual encoding model framework which uses the hierarchy of representations in the ventral stream to improve the model's performance in high-level visual areas. Under the framework, we propose two categories of hierarchical encoding models from the voxel and the feature perspectives to realize the hierarchical representations. From the voxel perspective, we first constructed an encoding model for the low-level visual area (V1 or V2) and extracted the voxel space predicted by the model. Then we use the extracted voxel space of the low-level visual area to predict the voxel space of the high-level visual area (V4 or LO) via constructing a voxel-to-voxel model. From the feature perspective, the feature space of the first model is extracted to predict the voxel space of the high-level visual area. The experimental results show that two categories of hierarchical encoding models effectively improve the encoding performance in V4 and LO. In addition, the proportion of the best-encoded voxels for different models in V4 and LO show that our proposed models have obvious advantages in prediction accuracy. We find that the hierarchy of representations in the ventral stream has a positive effect on improving the performance of the existing model in high-level visual areas.

4.
Comput Math Methods Med ; 2020: 5408942, 2020.
Article in English | MEDLINE | ID: mdl-32802150

ABSTRACT

Nowadays, visual encoding models use convolution neural networks (CNNs) with outstanding performance in computer vision to simulate the process of human information processing. However, the prediction performances of encoding models will have differences based on different networks driven by different tasks. Here, the impact of network tasks on encoding models is studied. Using functional magnetic resonance imaging (fMRI) data, the features of natural visual stimulation are extracted using a segmentation network (FCN32s) and a classification network (VGG16) with different visual tasks but similar network structure. Then, using three sets of features, i.e., segmentation, classification, and fused features, the regularized orthogonal matching pursuit (ROMP) method is used to establish the linear mapping from features to voxel responses. The analysis results indicate that encoding models based on networks performing different tasks can effectively but differently predict stimulus-induced responses measured by fMRI. The prediction accuracy of the encoding model based on VGG is found to be significantly better than that of the model based on FCN in most voxels but similar to that of fused features. The comparative analysis demonstrates that the CNN performing the classification task is more similar to human visual processing than that performing the segmentation task.


Subject(s)
Models, Neurological , Neural Networks, Computer , Visual Perception/physiology , Algorithms , Artificial Intelligence/statistics & numerical data , Databases, Factual/statistics & numerical data , Functional Neuroimaging/statistics & numerical data , Humans , Image Processing, Computer-Assisted/statistics & numerical data , Magnetic Resonance Imaging/statistics & numerical data , Photic Stimulation , Visual Cortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...