Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(23): e202301073, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37011095

ABSTRACT

Without excess Li, anode-free Li-metal batteries (AFLMBs) have been proposed as the most likely solution to realizing highly-safe and cost-effective Li-metal batteries. Nevertheless, short cyclic life puzzles conventional AFLMBs due to anodic dead Li accumulation with a local current concentration induced by irreversible electrolyte depletion, insufficient active Li reservoir and slow Li+ transfer at the solid electrolyte interphase (SEI). Herein, SrI2 is introduced into carbon paper (CP) current collector to effectively suppress dead Li through synergistic mechanisms including reversible I- /I3 - redox reaction to reactivate dead Li, dielectric SEI surface with SrF2 and LiF to prevent electrolyte decomposition and highly ionic conductive (3.488 mS cm-1 ) inner layer of SEI with abundant LiI to enable efficient Li+ transfer inside. With the SrI2 -modified current collector, the NCM532/CP cell delivers unprecedented cyclic performances with a capacity of 129.2 mAh g-1 after 200 cycles.

2.
Research (Wash D C) ; 2022: 9837586, 2022.
Article in English | MEDLINE | ID: mdl-36128181

ABSTRACT

High-voltage lithium metal batteries (HVLMBs) have been arguably regarded as the most prospective solution to ultrahigh-density energy storage devices beyond the reach of current technologies. Electrolyte, the only component inside the HVLMBs in contact with both aggressive cathode and Li anode, is expected to maintain stable electrode/electrolyte interfaces (EEIs) and facilitate reversible Li+ transference. Unfortunately, traditional electrolytes with narrow electrochemical windows fail to compromise the catalysis of high-voltage cathodes and infamous reactivity of the Li metal anode, which serves as a major contributor to detrimental electrochemical performance fading and thus impedes their practical applications. Developing stable electrolytes is vital for the further development of HVLMBs. However, optimization principles, design strategies, and future perspectives for the electrolytes of the HVLMBs have not been summarized in detail. This review first gives a systematical overview of recent progress in the improvement of traditional electrolytes and the design of novel electrolytes for the HVLMBs. Different strategies of conventional electrolyte modification, including high concentration electrolytes and CEI and SEI formation with additives, are covered. Novel electrolytes including fluorinated, ionic-liquid, sulfone, nitrile, and solid-state electrolytes are also outlined. In addition, theoretical studies and advanced characterization methods based on the electrolytes of the HVLMBs are probed to study the internal mechanism for ultrahigh stability at an extreme potential. It also foresees future research directions and perspectives for further development of electrolytes in the HVLMBs.

3.
Small ; 18(23): e2107664, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35527335

ABSTRACT

Incorporation of ceramic materials into separators has been frequently applied in both research and industry to improve the overall high-temperature performances of lithium ion batteries. However, inorganic ceramic particles tend to form aggregation in separators and even fall off in the separator matrix due to the inferior combination between ceramic particles and polymer matrix, giving rise to a decrease in separator porosity and thus the degradation of battery performances. Herein, a single-layer core-shell architecture is designed to reinforce the polymer matrix through encircling Al2 O3 particles by poly(vinylidene fluoride) with strong inter-molecular interaction. The 3D-reinforced microstructure effectively improves pore distribution and thermal stability to resist the dimensional deformation at high temperatures, thus giving rise to a high Coulombic efficiency of 99.16% and 87.5% capacity retention after 500 cycles at 80 °C for LiFePO4 /Li batteries. In particular, the excellent performances of the proposed separator microstructure are confirmed with a thickness value of commercial separators. This work provides a promising strategy to fabricate a core-shell structural composite separator for stable lithium ion batteries at high temperatures.

4.
Adv Sci (Weinh) ; 9(5): e2104699, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34923779

ABSTRACT

Lithium metal batteries (LMBs) have aroused extensive interest in the field of energy storage owing to the ultrahigh anode capacity. However, strong solvation of Li+ and slow interfacial ion transfer associated with conventional electrolytes limit their long-cycle and high-rate capabilities. Herein an electrolyte system based on fluoroalkyl ether 2,2,2-trifluoroethyl-1,1,2,3,3,3-hexafluoropropyl ether (THE) and ether electrolytes is designed to effectively upgrade the long-cycle and high-rate performances of LMBs. THE owns large adsorption energy with ether-based solvents, thus reducing Li+ interaction and solvation in ether electrolytes. With THE rich in fluoroalkyl groups adjacent to oxygen atoms, the electrolyte owns ultrahigh polarity, enabling solvation-free Li+ transfer with a substantially decreased energy barrier and ten times enhancement in Li+ transference at the electrolyte/anode interface. In addition, the uniform adsorption of fluorine-rich THE on the anode and subsequent LiF formation suppress dendrite formation and stabilize the solid electrolyte interphase layer. With the electrolyte, the lithium metal battery with a LiFePO4 cathode delivers unprecedented cyclic performances with only 0.0012% capacity loss per cycle over 5000 cycles at 10 C. Such enhancement is consistently observed for LMBs with other mainstream electrodes including LiCoO2 and LiNi0.5 Mn0.3 Co0.2 O2 , suggesting the generality of the electrolyte design for battery applications.

5.
Inorg Chem ; 57(16): 10249-10256, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-30074777

ABSTRACT

Heterostructured TiO2 materials are of great importance in electronic and photochemical related applications. We report herein a simple, low-cost, and scalable fabrication of metal oxides heterostructured TiO2 nanotube arrays (NTAs) through a combined strategy of thermal decomposition and crystallization. Various M xO y/TiO2 heterostructured films (M = Zn, Ce, Cu, Cr...) were obtained by using TiO2 NTAs as "nano-containers" as well as "nano-reactors", while using M(CH3COO) x solutions as the precursors. SEM, XRD, EDS results demonstrated that Cu2O/TiO2 NTAs, ZnO/TiO2 NTAs, Cr2O3/TiO2 NTAs, and CeO2/TiO2 NTAs were successfully fabricated. Photocatalytic results revealed that the heterostructured M xO y/TiO2 films could either enhance the UV photocatalytic activities or enable the visible light photocatalytic activities of the TiO2 NTAs. This study provides a facile general approach to prepare M xO y/TiO2 NTAs films, which could be very useful for environmental and energy areas.

6.
Nanoscale Res Lett ; 13(1): 89, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29616354

ABSTRACT

In this paper, a facile method was proposed to load CeO2 nanoparticles (NPs) on anodic TiO2 nanotube (NT) arrays, which leads to a formation of CeO2/TiO2 heterojunctions. Highly ordered anatase phase TiO2 NT arrays were fabricated by using anodic oxidation method, then these individual TiO2 NTs were used as tiny "nano-containers" to load a small amount of Ce(NO3)3 solutions. The loaded anodic TiO2 NTs were baked and heated to a high temperature of 450 °C, under which the Ce(NO3)3 would be thermally decomposed inside those nano-containers. After the thermal decomposition of Ce(NO3)3, cubic crystal CeO2 NPs were obtained and successfully loaded into the anodic TiO2 NT arrays. The prepared CeO2/TiO2 heterojunction structures were characterized by a variety of analytical technologies, including XRD, SEM, and Raman spectra. This study provides a facile approach to prepare CeO2/TiO2 films, which could be very useful for environmental and energy-related areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...