Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Allergy Immunol ; 35(6): e14182, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899630

ABSTRACT

BACKGROUND: Polymorphisms in susceptibility genes are a major risk factor for the development of asthma. Understanding these genetic variants helps elucidate asthma's pathogenesis, predict its onset, expedite antiasthma medication development, and achieve precise targeted individualized treatment. This study developed a test kit based on susceptibility genes for predicting asthma in Chinese children. METHODS: The present study constructed a VariantPro Targeted Library Preparation System with 72 single nucleotide polymorphism (SNP) loci associated with asthma from the ClinVar, OMIM, and SNPedia databases. These SNP loci were detected in the peripheral blood of 499 children with asthma and 500 healthy children. Significant differences were discovered for seven SNP loci. Simultaneously, whole exome sequencing of 46 children with asthma and 50 healthy children identified eight SNP loci with significant differences. The 15 SNP loci identified from Chinese children with asthma were validated in an independent population of 97 children with asthma and 93 healthy children by conducting multiplex polymerase chain reaction (PCR)-next-generation sequencing genotyping. RESULTS: Four loci (rs12422149, rs7216389, rs4065275, and rs41453444) were identified, and a single-tube multifluorescent qPCR (real-time quantitative PCR) test kit was developed using these four SNP loci. The kit was tested on 269 children with asthma and 724 children with bronchopneumonia. CONCLUSIONS: We identified four loci as susceptibility genes and developed a quantitative PCR test kit for predicting asthma development in Chinese children.


Subject(s)
Asthma , Exome Sequencing , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Adolescent , Child , Child, Preschool , Female , Humans , Male , Asthma/genetics , Asthma/diagnosis , Case-Control Studies , China/epidemiology , Databases, Genetic , East Asian People/genetics , Exome Sequencing/methods , Genotype , High-Throughput Nucleotide Sequencing/methods
2.
Int J Genomics ; 2024: 3779688, 2024.
Article in English | MEDLINE | ID: mdl-38716377

ABSTRACT

Background: Genome data have been used to find novel allergen from house dust mites. Here, we aim to construct a chromosome-level genome assembly of Dermatophagoides farinae, a common allergenic mite species. Methods: We achieved a chromosome-level assembly of D. farinae's genome by integrating PacBio single-molecule real-time sequencing, Illumina paired-end sequencing, and Hi-C technology, followed by annotating allergens and mapping them to specific chromosomes. Results: A 62.43 Mb genome was assembled with a 0.52% heterozygosity rate and a 36.11 Merqury-estimated quality value. The assembled genome represents 92.1% completeness benchmarking universal single-copy orthologs with a scaffold N50 value of 7.11 Mb. Hi-C scaffolding of the genome resulted in construction of 10 pseudochromosomes. The genome comprises 13.01% (7.66 Mb) repetitive sequences and predicts 10,709 protein-coding genes, 96.57% of which are functionally annotated. Moreover, we identified and located 36 allergen groups on specific chromosomes, including allergens Der f 1, Der f 2, Der f 23, Der f 4, Der f 5, Der f 7, and Der f 21 located on chromosomes 2, 1, 7, 3, 4, 6, and 4, respectively. Conclusion: This comprehensive genomic data provides valuable insights into mite biology and evolutionary adaptations, potentially advancing D. farinae allergy research and treatment strategies.

3.
Int J Biol Macromol ; 262(Pt 1): 129972, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336314

ABSTRACT

BACKGROUND: Blomia tropicalis (B. tropicalis) has been reported to impose an increased risk of allergic diseases. However, few characteristics of the unknown allergen components responsible for B. tropicalis allergy and clinical relevance have been fully identified. METHODS: We synthesized and characterized the physicochemical properties and cross-reactivity of the newly discovered recombinant B. tropicalis group 41 allergen (rBlo t 41). Subsequently, sera were collected from 107 B. tropicalis allergic subjects to evaluate the prevalence of the rBlo t 41. Lastly, its allergenicity was tested in humans by basophil activation assays, and in mice by a model of allergic asthma. RESULTS: The mature protein of rBlo t 41 was described as 104 amino acids long and 15.8 kDa, and its limited cross-reactivity was observed between allergens of house dust mites (HDM). Sensitization rate of rBlo t 41 (56.07 %) was lower than rBlo t 2 (76.29 %) and rBlo t 5 (69.07 %) in our study. Besides, rBlo t 41 elicited CD63 upregulation in basophils, whereas rBlo t 41-sensitized mice generated rBlo t 41-IgE and developed allergic airway inflammation after allergen exposure. Of note, component-based tests showed a high area under curve value (AUC = 0.75) of rBlo t 41, displaying its favorable diagnostic potential in B. tropicalis allergy. CONCLUSIONS: rBlo t 41 was identified as a candidate novel major allergen with good diagnostic potential in B. tropicalis sensitization. Additionally, we provided strong evidence about rBlo t 41 on the clinically relevant manifestations in B. tropicalis allergies, conducive to facilitating the development of component-resolved diagnosis.


Subject(s)
Asthma , Hypersensitivity , Humans , Mice , Animals , Allergens/chemistry , Cross Reactions , Inflammation , Chitin
4.
Int J Biol Macromol ; 258(Pt 1): 128856, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38143053

ABSTRACT

Allergen component products, such as recombinant proteins and epitope peptides of allergic components, are used as an adjunct to allergen-specific immunotherapy. We characterized a novel allergen, Tyr p 31, from Tyrophagus putrescentiae, a common allergenic mite. T. putrescentiae total RNA was amplified to Tyr p 31-encoding cDNA, which was inserted into pET28a(+). pET28a(+)-Tyr p 31 was then transformed into Rosetta 2 (DE3) pLysS cells and expressed under isopropyl ß-D-thiogalactoside induction. Next, we visualized Tyr p 31 through sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blotting based on its theoretical molecular weight. Recombinant Tyr p 31 (rTyr p 31) was purified, and its secondary structure was noted to comprise α-helices, antiparallel coils, ß-turns, parallel coils, and random coils. Our enzyme-linked immunosorbent assay and Western blotting results for T. putrescentiae-positive sera from children with allergic disorders demonstrated rTyr p 31-specific IgE-positivity rates of 72.41 % and 85.7 %, respectively. In BEAS-2B cells, rTyr p 31 increased IL-6 and IL-8 expression; furthermore, BEAS-2B cells treated with 30 µg/mL rTyr p 31 demonstrated 100 upregulated and 12 downregulated genes. In summary, we identified Tyr p 31, a novel T. putrescentiae allergen component, and noted rTyr p 31 to have a high IgE-binding rate and strong immunogenicity.


Subject(s)
Allergens , Hypersensitivity , Child , Humans , Allergens/chemistry , Immunoglobulin E , Recombinant Proteins/genetics , Monophenol Monooxygenase , Tyrosine
6.
Pediatr Allergy Immunol ; 33(8): e13835, 2022 08.
Article in English | MEDLINE | ID: mdl-36003049

ABSTRACT

BACKGROUND: Dust mite extract contains multiple components that, while useful in clinical allergy diagnosis and treatment, can cause serious side effects. Defining components of dust mite extract is important their contributions to allergic disease. This study aimed to characterize a novel dust mite allergen, Der p 22. METHODS: We amplified the cDNA encoding Der p 22 from total RNA of the mite Dermatophagoides pteronyssinus, and inserted it into an expression construct for transformation to competent cells. Purified recombinant (r) Der p 22 was tested for IgE-binding reactivity in sera obtained from children with allergic asthma by the Affiliated Wuxi Children's Hospital of Nanjing Medical University (Jiangsu, China). rDer p 22 also was used to challenge BALB/c mice to assess effects on T helper cells and cytokine levels and applied to cultured lung epithelial cells to evaluate apoptosis and cytokine secretion. RESULTS: rDer p 22 bound to IgE in 93.75% of sera from pediatric allergic asthma patients. Mice challenged with rDer p 22 had altered Th1/Th2 ratios in spleen and lymph, and lower levels of cytokines IFN-γ but higher levels of IL-4 and IL-10 in alveolar lavage fluid compared with controls (p < .05). Cultured lung epithelial cells had greater apoptosis rates and exhibited higher levels of IL-6, IL-8, and GM-CSF when treated with rDer p 22 compared with control treatment (p < .05). CONCLUSIONS: Recombinant Der p 22 exhibited high IgE-binding rates in allergic children, indicating the activity of the recombinant protein and suggesting this novel allergen may be appropriate for inclusion in an allergy diagnostic workup. This finding is supported by in vitro and mouse in vivo studies showing rDer p 22 induced strong allergenic reactivity and apoptosis.


Subject(s)
Antigens, Dermatophagoides , Arthropod Proteins , Asthma , Hypersensitivity , Allergens , Animals , Antigens, Dermatophagoides/genetics , Antigens, Dermatophagoides/immunology , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Asthma/metabolism , Asthma/microbiology , Cloning, Molecular , Cytokines/metabolism , Dermatophagoides pteronyssinus , Dust , Humans , Immunoglobulin E/chemistry , Immunoglobulin E/metabolism , Mice , Pyroglyphidae
7.
Lab Chip ; 22(16): 3015-3024, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35791922

ABSTRACT

The emerging single-molecule detection platform digital enzyme-linked immunosorbent assay (ELISA) can detect numerous proteins simultaneously at serum concentrations as low as picograms per milliliter. We sought to improve cytokine detection with this platform to aid diagnosis of conditions such as allergy and asthma. We developed a multiple single-molecule detection digital ELISA approach, through the application of encoded magnetic microbeads to simultaneously detect three cytokines in one serum sample. We tested the approach's utility to distinguish asthma-related cytokines in children. Concentrations of interleukin-4 (IL-4) and IL-6 were significantly higher in children with asthma than in healthy controls, while the concentration of interferon-γ (IFN-γ) was significantly lower. Our method has higher accuracy than conventional methods, and our results indicate that the proposed improved high-sensitivity digital ELISA-based diagnosis approach can facilitate early detection and treatment of childhood asthma or related diseases.


Subject(s)
Asthma , Hypersensitivity , Asthma/diagnosis , Child , Cytokines , Enzyme-Linked Immunosorbent Assay/methods , Humans , Interferon-gamma/analysis
8.
Allergy ; 77(2): 469-482, 2022 02.
Article in English | MEDLINE | ID: mdl-34570913

ABSTRACT

BACKGROUND: Tyrophagus putresecentiae is an important mite species in rural and urban environments, causing sensitization and allergic disease. While evidence suggests that microRNAs (miRNAs) may regulate the expression of allergen-encoding genes, no study has directly investigated this possibility. Here, this gap was addressed by profiling miRNAs and elucidating their target allergen messenger RNAs (mRNAs) in this mite species. METHODS: Small RNA and transcriptome libraries were constructed for eggs, larvae, nymphs, and adults. After deep miRNA and whole-transcriptome sequencing were performed, the miRNA and allergen-encoding mRNA regulatory networks were explored. RESULTS: A total of 540 miRNAs were identified, including 155 with expression levels differing significantly across the four mite developmental stages (p < .01), 59 of which were novel. The mRNA expression for allergens was higher for Tyr p 1 in adults than in other developmental stages; Tyr p 2-5, 7, 10, 13, 33, and 34 in immature stages; and Tyr p 28, 35, and 36 in eggs and adults. A combined miRNA and transcriptome bioinformatics analysis showed that allergen Tyr p 3 was regulated by miRNA PC-5p-5698441_1, Tyr p 4 was regulated by PC-5p-7050653_1, and Tyr p 34 was regulated by PC-5p-5534223_1 and PC-5p-5698441_1. These three allergen mRNA and three miRNAs were identified using qRT-PCR, and their regulatory roles were confirmed by double-fluorescent reporter gene system and site-directed mutagenesis technology. CONCLUSIONS: For the first time, allergen mRNA expression and miRNAs were profiled throughout the life cycle for an allergen-producing mite, and the results showed that miRNAs bind to target allergen mRNAs to regulate their expression.


Subject(s)
Acaridae , Hypersensitivity , MicroRNAs , Mites , Adult , Allergens/genetics , Animals , Gene Expression Profiling , Gene Regulatory Networks , Humans , Hypersensitivity/genetics , Hypersensitivity/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...