Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-29886254

ABSTRACT

In mammals, uncoupling protein 1 (UCP1) is well known for its thermogenic role in brown adipose tissue (BAT). However, the UCP1 physiological roles are still unclear in fish, although several teleost ucp1 genes have been identified. The aim of this study is to investigate the potential roles of fish UCP1 involved in food intake regulation and energy homeostasis. We herein report on the molecular cloning, tissue distribution and the effect of fasting and refeeding on the expression of ucp1 in Channa argus. UCP1 consisted of a 921 bp open reading frame predicted to encode 306 amino acids. Sequence analysis revealed that snakehead UCP1 was highly conserved (>80%) with teleost UCP1, but shared a lower identity (60-72%) with mammals. Phylogenetic analysis supported that snakehead UCP1 was closely related to piscine UCP1. In addition, ucp1 was found to extensively expressed in all detected tissues, with the highest level in liver. Futhermore, the hepatic ucp1 was found to significantly increased after short-term and long-term food deprivation, and dramatically increased following refeeding. These findings suggested that snakehead UCP1 might play important roles in food intake regulation and fatty acid metabolism in snakehead fish, and it could be as a potential target locus to improve commercial production of this kind of fish.


Subject(s)
Fasting , Feeding Behavior , Fish Proteins/metabolism , Perciformes/metabolism , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Perciformes/physiology , Phylogeny , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Sequence Homology, Amino Acid , Tissue Distribution , Uncoupling Protein 1/chemistry
2.
Gen Comp Endocrinol ; 259: 147-153, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29174870

ABSTRACT

Neuropeptide Y (NPY) is a 36 amino-acid amidated peptide of the pancreatic polypeptide (PP) family, which plays an important role in appetite regulation and energy expenditure in mammals. Although several teleost NPY have been identified, its roles remain unclear in fish. We herein reported on the molecular cloning, tissue distribution and the effect of fasting on the expression of NPY in Channa argus, and designated as CaNPY. It consisted of a 300 bp open reading frame predicted to encode a prepro-NPY of 99 amino acids. Sequence analysis revealed that CaNPY was highly conserved (>60%) with other vertebrate NPY. Phylogenetic analysis highly supported CaNPY was closely related to piscine NPY. In addition, except for muscle and spleen tissues, CaNPY was found to extensively expressed in all other detected tissues, with the highest level in brain. Futhermore, the CaNPY transcript was found to significantly increase after short-term and long-term food deprivation, and dramatically decrease following refeeding. These findings suggested that CaNPY might be involved in food intake regulation and it could be as a potential target locus to improve commercial production of this kind of fish.


Subject(s)
Appetite Regulation/physiology , Cloning, Molecular/methods , Fasting/physiology , Fishes , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , Tissue Distribution/physiology , Animals , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...