Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 929
Filter
1.
Adv Mater ; : e2404291, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975670

ABSTRACT

The transition toward hydrogen gas (H2) as an eco-friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H2 leak detection and concentration monitoring. Although palladium (Pd)-based materials are preferred for their strong H2 affinity, intense palladium-hydrogen (Pd-H) interactions lead to phase transitions to palladium hydride (PdHx), compromising sensors' durability and detection speeds after multiple uses. In response, this study introduces a high-performance H2 sensor designed from thiolate-protected Pd nanoclusters (Pd8SR16), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium-hydrogen-sulfur (Pd-H-S) state during H2 adsorption. Striking a balance, it preserves Pd-H binding affinity while preventing excessive interaction, thus lowering the energy required for H2 desorption. The dynamic adsorption-dissociation-recombination-desorption process is efficiently and highly reversible with Pd8SR16, ensuring robust and rapid H2 sensing at parts per million (ppm). The Pd8SR16-based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t90 = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd-based H2 sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real-world gas sensing using ligand-protected metal nanoclusters.

2.
MedComm (2020) ; 5(7): e579, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38948113

ABSTRACT

The aberrant accumulation of intracellular disulfides in solute carrier family 7 member 11 (SLC7A11)high cells under glucose starvation induces disulfidptosis. Disulfidptosis has shown potential in tumor diagnosis and treatment.

3.
Nat Commun ; 15(1): 5216, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890331

ABSTRACT

Hyperpolarization and cyclic nucleotide (HCN) activated ion channels are critical for the automaticity of action potentials in pacemaking and rhythmic electrical circuits in the human body. Unlike most voltage-gated ion channels, the HCN and related plant ion channels activate upon membrane hyperpolarization. Although functional studies have identified residues in the interface between the voltage-sensing and pore domain as crucial for inverted electromechanical coupling, the structural mechanisms for this unusual voltage-dependence remain unclear. Here, we present cryo-electron microscopy structures of human HCN1 corresponding to Closed, Open, and a putative Intermediate state. Our structures reveal that the downward motion of the gating charges past the charge transfer center is accompanied by concomitant unwinding of the inner end of the S4 and S5 helices, disrupting the tight gating interface observed in the Closed state structure. This helix-coil transition at the intracellular gating interface accompanies a concerted iris-like dilation of the pore helices and underlies the reversed voltage dependence of HCN channels.


Subject(s)
Cryoelectron Microscopy , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Ion Channel Gating , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Humans , Potassium Channels/chemistry , Potassium Channels/metabolism , Models, Molecular , Membrane Potentials/physiology
4.
Article in English | MEDLINE | ID: mdl-38862425

ABSTRACT

Gametogenesis plays an important role in the reproduction and evolution of species. The transcriptomic and epigenetic alterations in this process can influence the reproductive capacity, fertilization, and embryonic development. The rapidly increasing single-cell studies have provided valuable multi-omics resources. However, data from different layers and sequencing platforms have not been uniformed and integrated, which greatly limits their use for exploring the molecular mechanisms that underlie oogenesis and spermatogenesis. Here, we develop GametesOmics, a comprehensive database that integrates the data of gene expression, DNA methylation, and chromatin accessibility during oogenesis and spermatogenesis in humans and mice. GametesOmics provides a user-friendly website and various tools, including Search and Advanced Search for querying the expression and epigenetic modification(s) of each gene; Tools with Differentially expressed gene (DEG) analysis for identifying DEGs, Correlation analysis for demonstrating the genetic and epigenetic changes, Visualization for displaying single-cell clusters and screening marker genes as well as master transcription factors (TFs), and MethylView for studying the genomic distribution of epigenetic modifications. GametesOmics also provides Genome Browser and Ortholog for tracking and comparing gene expression, DNA methylation, and chromatin accessibility between humans and mice. GametesOmics offers a comprehensive resource for biologists and clinicians to decipher the cell fate transition in germ cell development, and can be accessed at http://gametesomics.cn/.


Subject(s)
DNA Methylation , Databases, Genetic , Gametogenesis , Animals , Humans , Mice , Gametogenesis/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Male , Germ Cells/metabolism , Female , Spermatogenesis/genetics , Oogenesis/genetics , Genomics/methods , Multiomics
5.
Clin Exp Med ; 24(1): 120, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847945

ABSTRACT

Long non-coding RNAs (lncRNAs) are fundamental agents that govern tumor growth and metastasis across a spectrum of cancer types. Linc01503 is a novel lncRNA situated on human chromosome 19, and it is intricately linked with the pathogenesis of multiple human cancers, underscoring its substantial role and significance in cancer development. It has been recognized as a pivotal contributor to inducing malignant behaviors in lung cancer, gastric cancer, colorectal cancer, cholangiocarcinoma, liver cancer and pancreatic cancer, among others. The dysregulation of linc01503 has been shown to strongly associate with advanced clinicopathological factors and foretell an unfavorable prognosis, indicating its prospective clinical significance as a valuable biomarker and therapeutic target for individuals with cancer. The primary objective of the current work is to present the intricate molecular pathways governed by linc01503 and its profound clinical relevance in the context of carcinogenesis. We also focus on the future prospects of linc01503-based clinical application. This will help us to better understand the regulatory mechanism of carcinogenesis and provide new ideas for precision molecular medicine.


Subject(s)
Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
6.
Cell Discov ; 10(1): 63, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862482

ABSTRACT

Conjunctival melanoma (CoM) is a potentially devastating tumor that can lead to distant metastasis. Despite various therapeutic strategies for distant metastatic CoM, the clinical outcomes remain unfavorable. Herein, we performed single-cell RNA sequencing (scRNA-seq) of 47,017 cells obtained from normal conjunctival samples (n = 3) and conjunctival melanomas (n = 7). Notably, we noticed a higher abundance of cancer-associated fibroblasts (CAFs) in tumor microenvironment (TME), correlated with enhanced angiogenic capacity and increased VEGFR expression in distal metastatic CoM. Additionally, we observed a significant decrease in the proportion of total CD8+ T cells and an increase in the proportion of naive CD8+ T cells, contributing to a relatively quiescent immunological environment in distal metastatic CoM. These findings were confirmed through the analyses of 70,303 single-cell transcriptomes of 7 individual CoM samples, as well as spatially resolved proteomes of an additional 10 samples of CoMs. Due to the increase of VEGFR-mediated angiogenesis and a less active T cell environment in distal metastatic CoMs, a clinical trial (ChiCTR2100045061) has been initiated to evaluate the efficacy of VEGFR blockade in combination with anti-PD1 therapy for patients with distant metastatic CoM, showing promising tumor-inhibitory effects. In conclusion, our study uncovered the landscape and heterogeneity of the TME during CoM tumorigenesis and progression, empowering clinical decisions in the management of distal metastatic CoM. To our knowledge, this is the initial exploration to translate scRNA-seq analysis to a clinical trial dealing with cancer, providing a novel concept by accommodating scRNA-seq data in cancer therapy.

7.
Med Res Rev ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38922930

ABSTRACT

Breast cancer (BC) is a highly heterogeneous disease, and the presence of germline breast cancer gene mutation (gBRCAm) is associated with a poor prognosis. Triple-negative breast cancer (TNBC) is a BC subtype, characterized by the absence of hormone and growth factor receptor expression, making therapeutic decisions difficult. Defects in the DNA damage response pathway due to mutation in breast cancer genes (BRCA 1/2) lead to homologous recombination deficiency (HRD). However, in HRD conditions, poly (adenosine diphosphate-ribose) polymerase (PARP) proteins repair DNA damage and lead to tumor cell survival. Biological understanding of HRD leads to the development of PARP inhibitors (PARPi), which trap PARP proteins and cause genomic instability and tumor cell lysis. HRD assessment can be an important biomarker in identifying gBRCAm patients with BC who could benefit from PARPi therapy. HRD can be identified by homologous recombination repair (HRR) gene-based assays, genomic-scarring assays and mutational signatures, transcription and protein expression profiles, and functional assays. However, gold standard methodologies that are robust and reliable to assess HRD are not available currently. Hence, there is a pressing need to develop accurate biomarkers identifying HRD tumors to guide targeted therapies such as PARPi in patients with BC. HRD assessment has shown fruitful outcomes in chemotherapy studies and preliminary evidence on PARPi intervention as monotherapy and combination therapy in HRD-stratified patients. Furthermore, ongoing trials are exploring the potential of PARPi in BC and clinically complex TNBC settings, where HRD testing is used as an adjunct to stratify patients based on BRCA mutations.

8.
Fundam Res ; 4(1): 43-50, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38933847

ABSTRACT

Quasi-parametric chirped-pulse amplification (QPCPA), which features a theoretical peak power much higher than those obtained with Ti:sapphire laser or optical parametric chirped-pulse amplification, is promising for future ultra-intense lasers. The doped rare-earth ion used for idler dissipation is critical for effective QPCPA, but is usually not compatible with traditional crystals. Thus far, only one dissipative crystal of Sm3+-doped yttrium calcium oxyborate has been grown and applied. Here we introduce optical means to modify traditional crystals for QPCPA applications. We theoretically demonstrate two dissipation schemes by idler frequency doubling and sum-frequency generation with an additional laser. In contrast to absorption dissipation, the proposed nonlinear dissipations ensure not only high signal efficiency but also high small-signal gain. The demonstrated ability to optically modify crystals will facilitate the wide application of QPCPA.

9.
Sci Total Environ ; 938: 173576, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38810761

ABSTRACT

Surface modification of graphene-based nanomaterials (GBNs) may occur in aquatic environment and during intentional preparation. However, the influence of the surface groups on the developmental toxicity of GBNs has not been determined. In this study, we evaluated the developmental toxicity of three GBNs including GO (graphene oxide), RGO (reduced GO) and RGO-N (aminated RGO) by employing zebrafish embryos at environmentally relevant concentrations (1-100 µg/L), and the underlying metabolic mechanisms were explored. The results showed that both GO and RGO-N disturbed the development of zebrafish embryos, and the adverse effect of GO was greater than that of RGO-N. Furthermore, the oxygen-containing groups of GBNs play a more important role in inducing developmental toxicity compared to size, defects and nitrogen-containing groups. Specifically, the epoxide and hydroxyl groups of GBNs increased their intrinsic oxidative potential, promoted the generation of ROS, and caused lipid peroxidation. Moreover, a significant decrease in guanosine and abnormal metabolism of multiple glycerophospholipids were observed in all three GBN-treated groups. Nevertheless, GO exposure triggered more metabolic activities related to lipid peroxidation than RGO or RGO-N exposure, and the disturbance intensity of the same metabolite was greater than that of the other two agents. These findings reveal underlying metabolic mechanisms of GBN-induced developmental toxicity.


Subject(s)
Glycerophospholipids , Graphite , Nanostructures , Water Pollutants, Chemical , Zebrafish , Graphite/toxicity , Animals , Glycerophospholipids/metabolism , Nanostructures/toxicity , Water Pollutants, Chemical/toxicity , Embryo, Nonmammalian/drug effects , Metabolic Networks and Pathways/drug effects , Lipid Peroxidation/drug effects
10.
Front Microbiol ; 15: 1369662, 2024.
Article in English | MEDLINE | ID: mdl-38803378

ABSTRACT

Staphylococcus aureus strains cause the majority of pneumonia cases and are resistant to various antibiotics. Given this background, it is very important to discover novel host-targeted therapies. Licochalcone A (LAA), a natural plant product, has various biological activities, but its primary targets in S. aureus pneumonia remain unclear. Therefore, the purpose of this study was to identify its molecular target against S. aureus pneumonia. Network pharmacology analysis, histological assessment, enzyme-linked immunosorbent assays, and Western blotting were used to confirm the pharmacological effects. Network pharmacology revealed 33 potential targets of LAA and S. aureus pneumonia. Enrichment analysis revealed that these potential genes were enriched in the Toll-like receptor and NOD-like receptor signaling pathways. The results were further verified by experiments in which LAA alleviated histopathological changes, inflammatory infiltrating cells and inflammatory cytokines (TNF, IL-6, and IL-1ß) in the serum and bronchoalveolar lavage fluid in vivo. Moreover, LAA treatment effectively reduced the expression levels of NF-κB, p-JNK, p-p38, NLRP3, ASC, caspase 1, IL-1ß, and IL-18 in lung tissue. The in vitro experimental results were consistent with the in vivo results. Thus, our findings demonstrated that LAA exerts anti-infective effects on S. aureus-induced lung injury via suppression of the Toll-like receptor and NOD-like receptor signaling pathways, which provides a theoretical basis for understanding the function of LAA against S. aureus pneumonia and implies its potential clinical application.

11.
Int J Surg ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38814280

ABSTRACT

BACKGROUND: The in-depth understanding of the fine anatomy of the liver has promoted the development of modern liver surgery. With the rapid popularity of laparoscopic hepatectomy, the membrane structure of the liver and its ability to dissect the intra- and extra-hepatic vascular system more conveniently and accurately has been gradually emphasized. OBJECTIVE: Exploring the value of extrahepatic sheath dissection of the hepatic pedicle in minimally invasive anatomical hepatectomy with cystic plate approach. This study aims to assess the benefits of integrating the cystic plate approach with real-time guided laparoscopic anatomical hepatectomy, in comparison with conventional laparoscopic anatomical hepatectomy. MATERIALS AND METHODS: Based on the theory of cystic plate and hepatic portal plate, we have pioneered the fluorescence real-time guided cystic plate approach in hepatectomy. The article focuses on the anatomical knowledge and technical difficulties of anatomical hepatectomy with fluoroscopic laparoscopic cystic plate approach and explores the safety and practicality of the cystic plate approach in laparoscopic anatomical hepatectomy. Additionally, a retrospective cohort study was also conducted to compare the operation time, intraoperative blood loss, and postoperative complications between the cystic plate approach and the conventional approach during fluoroscopic laparoscopic hepatectomy. RESULTS: A total of 38 patients who met the inclusion criteria underwent laparoscopic hepatectomy between January 2019 and November 2022. No significant disadvantages were found in terms of operation time and intraoperative blood loss during the surgeries. Furthermore, the postoperative indications, including liver function indexes on the first postoperative day, WBC, and the postoperative hospital stay, were also not affected, thus proving the safety of the cystic approach. Importantly, through the cystic plate approach, the target liver pedicle was fully freed, and then the segments to be resected were precisely marked by positive or negative staining, followed by hepatectomy under real-time fluoroscopic guidance. This approach is extremely advantageous in anatomical liver segment resections, especially in right posterior lobe or hemi-hepatectomy, without increasing intraoperative bleeding or postoperative complication rates. CONCLUSION: This technique allows for easy and safe freeing of the target liver pedicle using membrane structures, and also allows for precise anatomical hepatectomy in combination with real-time fluoroscopic laparoscopic navigation.

12.
World J Gastroenterol ; 30(10): 1377-1392, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38596500

ABSTRACT

BACKGROUND: Crohn's disease (CD) is often misdiagnosed as intestinal tuberculosis (ITB). However, the treatment and prognosis of these two diseases are dramatically different. Therefore, it is important to develop a method to identify CD and ITB with high accuracy, specificity, and speed. AIM: To develop a method to identify CD and ITB with high accuracy, specificity, and speed. METHODS: A total of 72 paraffin wax-embedded tissue sections were pathologically and clinically diagnosed as CD or ITB. Paraffin wax-embedded tissue sections were attached to a metal coating and measured using attenuated total reflectance fourier transform infrared spectroscopy at mid-infrared wavelengths combined with XGBoost for differential diagnosis. RESULTS: The results showed that the paraffin wax-embedded specimens of CD and ITB were significantly different in their spectral signals at 1074 cm-1 and 1234 cm-1 bands, and the differential diagnosis model based on spectral characteristics combined with machine learning showed accuracy, specificity, and sensitivity of 91.84%, 92.59%, and 90.90%, respectively, for the differential diagnosis of CD and ITB. CONCLUSION: Information on the mid-infrared region can reveal the different histological components of CD and ITB at the molecular level, and spectral analysis combined with machine learning to establish a diagnostic model is expected to become a new method for the differential diagnosis of CD and ITB.


Subject(s)
Crohn Disease , Enteritis , Tuberculosis, Gastrointestinal , Humans , Crohn Disease/diagnosis , Crohn Disease/pathology , Spectroscopy, Fourier Transform Infrared , Diagnosis, Differential , Paraffin , Tuberculosis, Gastrointestinal/diagnosis , Tuberculosis, Gastrointestinal/pathology , Enteritis/diagnosis , Machine Learning , Ataxia Telangiectasia Mutated Proteins
13.
Sci Total Environ ; 928: 172592, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38642768

ABSTRACT

Submerged plants affect nitrogen cycling in aquatic ecosystems. However, whether and how submerged plants change nitrous oxide (N2O) production mechanism and emissions flux remains controversial. Current research primarily focuses on the feedback from N2O release to variation of substrate level and microbial communities. It is deficient in connecting the relative contribution of individual N2O production processes (i.e., the N2O partition). Here, we attempted to offer a comprehensive understanding of the N2O mitigation mechanism in aquatic ecosystems on the Changjiang River Delta according to stable isotopic techniques, metagenome-assembly genome analysis, and statistical analysis. We found that the submerged plant reduced 45 % of N2O emissions by slowing down the dissolved inorganic nitrogen conversion velocity to N2O in sediment (Vf-[DIN]sed). It was attributed to changing the N2O partition and suppressing the potential capacity of net N2O production (i.e., nor/nosZ). The dominated production processes showed a shift with increasing excess N2O. Meanwhile, distinct shift thresholds of planted and unplanted habitats reflected different mechanisms of stimulated N2O production. The hotspot zone of N2O production corresponded to high nor/nosZ and unsaturated oxygen (O2) in unplanted habitat. In contrast, planted habitat hotspot has lower nor/nosZ and supersaturated O2. O2 from photosynthesis critically impacted the activities of N2O producers and consumers. In summary, the presence of submerged plants is beneficial to mitigate N2O emissions from aquatic ecosystems.


Subject(s)
Ecosystem , Nitrous Oxide , Rivers , China , Rivers/chemistry , Nitrous Oxide/analysis , Plants , Environmental Monitoring , Air Pollutants/analysis
14.
Opt Express ; 32(4): 5481-5491, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439273

ABSTRACT

Quasi-parametric amplification (QPA), a variant of optical parametric amplification, can release the phase-matching requirement owing to the introduction of idler dissipation, and thus may support ultrabroad bandwidth. Here we establish the gain-dispersion equation for QPA, which reveals the interplay of signal gain, idler dissipation and phase mismatch. The idler dissipation dramatically enhances the gain bandwidth, which breaks the limit set by phase matching. We theoretically demonstrate that QPA with strong dissipation allows high-efficiency few-cycle pulse amplification in those nonlinear crystals without a magic phase-matching solution.

15.
Exp Neurol ; 378: 114755, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38493982

ABSTRACT

BACKGROUND: Repeated sevoflurane exposures in neonatal rats may lead to neuronal apoptosis affecting long-term cognitive function, the mechanism is unknown. Neuroligin1 (NL1) is essential for normal excitatory transmission and long-term synaptic plasticity in the hippocampus of intact animals. Herein, we explore the role of NL1 in hippocampal excitatory synapses on long-term cognitive impairments induced by repeated sevoflurane exposures in neonatal rats. METHODS: From postnatal day six (P6) to P8, neonatal rats were exposed to 30% oxygen or 3% sevoflurane +30% oxygen for 2 h daily. Rats from each litter were randomly assigned to five groups: control group (Con), native control adeno-associated virus (NC-AAV) group (Con + NC-AAV), sevoflurane group (Sev), sevoflurane + recombinant RNAi adeno-associated virus targeting NL1 downregulation (NL1--AAV) group (Sev + NL1--AAV) and control + recombinant RNAi adeno-associated virus targeting NL1 upregulation (NL1+-AAV) group (Con + NL1+-AAV). Animals were injected with NC-AAV or NL1-AAV into the bilateral hippocampal CA1 area and caged on P21. From P35 to P40, behavioral tests including open field (OF), novel object recognition (NOR), and fear conditioning (FC) tests were performed to assess cognitive function in adolescent rats. In another experiment, rat brains were harvested for immunofluorescence staining, western blotting, co-immunoprecipitation, and real-time polymerase chain reaction (PCR). RESULTS: We found that the mRNA and protein levels of NL1 were substantially higher in the Sev group than in the Con group. Immunofluorescence showed that NL1 and PSD95 were highly colocalized in hippocampal CA1 area and vesicular GABA transporter (vGAT) around neurons decreased after repeated sevoflurane exposures. Co-immunoprecipitation showed that the amount of PSD95 with NL1 antibody was significantly increased in the Sev group compared to the Con group. These rats had a poorer performance in the NOR and FC tests than control rats when they were adolescents. These results were reversed by NL1--AAV injection into the CA1 area. NL1+-AAV group was similar to the Sev group. CONCLUSION: We have demonstrated that repeated neonatal sevoflurane exposures decreased inhibitory synaptic inputs (labelled by vGAT) around neurons, which may influence the upregulation of NL1 in hippocampal excitatory synapses and enhanced NL1/PSD95 interaction, ultimately leading to long-term cognitive impairments in adolescent rats. Injecting NL1--AAV reversed this damage. These results suggested that NL1 in excitatory synapses contributes to long-term cognitive impairments after repeated neonatal sevoflurane exposures.


Subject(s)
Anesthetics, Inhalation , Animals, Newborn , Cognitive Dysfunction , Hippocampus , Rats, Sprague-Dawley , Sevoflurane , Synapses , Animals , Sevoflurane/toxicity , Rats , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Synapses/drug effects , Synapses/metabolism , Anesthetics, Inhalation/toxicity , Male , Hippocampus/drug effects , Hippocampus/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Female
16.
Sci Total Environ ; 926: 172025, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38554954

ABSTRACT

Adsorption, which is a quick and effective method for phosphate management, can effectively address the crisis of phosphorus mineral resources and control eutrophication. Phosphate management systems typically use iron-containing nanominerals (ICNs) with large surface areas and high activity, as well as modified ICNs (mICNs). This paper comprehensively reviews phosphate management by ICNs and mICNs in different water environments. mICNs have a higher affinity for phosphates than ICNs. Phosphate adsorption on ICNs and mICNs occurs through mechanisms such as surface complexation, surface precipitation, electrostatic ligand exchange, and electrostatic attraction. Ionic strength influences phosphate adsorption by changing the surface potential and isoelectric point of ICNs and mICNs. Anions exhibit inhibitory effects on ICNs and mICNs in phosphate adsorption, while cations display a promoting effect. More importantly, high concentrations and molecular weights of natural organic matter can inhibit phosphate adsorption by ICNs and mICNs. Sodium hydroxide has high regeneration capability for ICNs and mICNs. Compared to ICNs with high crystallinity, those with low crystallinity are less likely to desorb. ICNs and mICNs can effectively manage municipal wastewater, eutrophic seawater, and eutrophic lakes. Adsorption of ICNs and mICNs saturated with phosphate can be used as fertilizers in agricultural production. Notably, mICNs and ICNs have positive and negative effects on microorganisms and aquatic organisms in soil. Finally, this study introduces the following: trends and prospects of machine learning-guided mICN design, novel methods for modified ICNs, mICN regeneration, development of mICNs with high adsorption capacity and selectivity for phosphate, investigation of competing ions in different water environments by mICNs, and trends and prospects of in-depth research on the adsorption mechanism of phosphate by weakly crystalline ferrihydrite. This comprehensive review can provide novel insights into the research on high-performance mICNs for phosphate management in the future.

17.
J Am Chem Soc ; 146(11): 7373-7385, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38433410

ABSTRACT

Organic-inorganic atomically precise nanoclusters provide indispensable building blocks for establishing structure-property links in hybrid condensed matter. However, robust glasses of ligand-protected nanocluster solids have yet to be demonstrated. Herein, we show [Cu4I4(PR3)4] cubane nanoclusters coordinated by phosphine ligands (PR3) form robust melt-quenched glasses in air with reversible crystal-liquid-glass transitions. Protective phosphine ligands critically influence the glass formation mechanism, modulating the glasses' physical properties. A hybrid glass utilizing ethyldiphenylphosphine-based nanoclusters, [Cu4I4(PPh2Et)4], exhibits superb optical properties, including >90% transmission in both visible and near-infrared wavelengths, negligible self-absorption, near-unity quantum yield, and high light yield. Experimental and theoretical analyses demonstrate the structural integrity of the [Cu4I4(PPh2Et)4] nanocluster, i.e., iodine-bridged tetranuclear cubane, has been fully preserved in the glass state. The strong internanocluster CH-π interactions found in the [Cu4I4(PPh2Et)4] glass and subsequently reduced structural vibration account for its enhanced luminescence properties. Moreover, this highly transparent glass enables performant X-ray imaging and low-loss waveguiding in fibers drawn above the glass transition. The discovery of "nanocluster glass" opens avenues for unraveling glass formation mechanisms and designing novel luminescent glasses of well-defined building blocks for advanced photonics.

18.
J Hazard Mater ; 467: 133673, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38340561

ABSTRACT

Black-odorous waters (BOWs) are heavily polluted waters where microbial information remains elusive mechanistically. Based on gene amplicon and metagenomics sequencing, a comprehensive study was conducted to investigate the microbial communities in urban and rural BOWs. The results revealed that microbial communities' assembly in urban and rural BOWs was predominantly governed by stochastic factors at the community level. At the taxonomic level, there were 62 core species (58.48%) in water and 207 core species (44.56%) in sediment across urban and rural areas. Notably, significant differences were observed in the functional genetic composition of BOWs between urban and rural areas. Specifically, rural areas exhibited an enhanced abundance of genes involved in nitrogen fixation, Fe2+ transport, and sulfate reduction. Conversely, urban areas showed higher abundances of some genes associated with carbon fixation, nitrification and denitrification. A sulfur-centered ecological model of microbial communities was constructed by integrating data from the three levels of analysis, and 14 near-complete draft genomes were generated, representing a substantial portion of the microbial community (35.04% in rural BOWs and 29.97% in urban BOWs). This research provides significant insights into the sustainable management and preservation of aquatic ecosystems affected by BOWs.


Subject(s)
Microbiota , Microbiota/genetics , Nitrification , Water Microbiology , Water Pollution , Water
19.
J Environ Manage ; 353: 120200, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38330836

ABSTRACT

Over the last four decades, the Chinese government has predominantly employed emission fees as a regulatory strategy to mitigate pollution from firms. However, the effectiveness of escalating emission fee rates on the emission levels of Chinese firms has not been examined. This study utilizes data from more than 80,000 Chinese firms spanning 2004-2013, employing difference-in-differences models to assess the effects of rising emission fee rates on firm emissions. The findings indicate the following: (1) Increased emission fee rates substantially reduce sulfur dioxide and chemical oxygen demand emissions among Chinese firms; (2) These heightened fees encourage firms to implement both end-of-pipe treatment and source control for sulfur dioxide and end-of-pipe treatment for chemical oxygen demand; (3) The emission reduction effects vary according to firm ownership and size. This research offers empirical evidence on the efficacy of emission fee systems and provides valuable insights for developing market incentive-based environmental regulations in the future.


Subject(s)
Environmental Pollution , Sulfur Dioxide , Sulfur Dioxide/analysis , Government , China
20.
Heliyon ; 10(2): e24738, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38312707

ABSTRACT

Air pollution poses a significant threat to human health and the environment globally. Precise analysis and prediction of pollutant concentrations are essential for monitoring and managing air quality. However, reliable analysis and prediction require comprehensive and high-quality data, which is often compromised due to missing data during collection. Unfortunately, conventional methods for addressing missing data fall short of providing adequate solutions. The missing data for air quality indicators are commonly systematic, with all data points missing for extended periods. This makes it difficult to establish correlations and populate the missing data accurately. To address this problem, we propose a Densely Connected Causal Convolutional Network Separating Past and Future Data (DCCN-SPF), a deep learning-based model that fills in continuous missing PM2.5 concentration data in the original dataset. It extracts features from past and future data separately using densely connected causal convolutional networks and incorporates linear interpolation and deep learning structures to improve prediction accuracy. Using air quality monitoring data from the China Environmental Monitoring Station between 2017 and 2021 in Beijing, we compare our proposed model with baseline models and find that our model outperforms others in predicting PM2.5 concentrations. The evaluation metrics MAE and RMSE are used, revealing significant reductions of 8.7-21.6 % for MAE and 7.1-23.5 % for RMSE in favor of our proposed DCCN-SPF model.

SELECTION OF CITATIONS
SEARCH DETAIL
...