Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Methods ; 21(10): 1936-1946, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232199

ABSTRACT

Digital reconstruction of the intricate 3D morphology of individual neurons from microscopic images is a crucial challenge in both individual laboratories and large-scale projects focusing on cell types and brain anatomy. This task often fails in both conventional manual reconstruction and state-of-the-art artificial intelligence (AI)-based automatic reconstruction algorithms. It is also challenging to organize multiple neuroanatomists to generate and cross-validate biologically relevant and mutually agreed upon reconstructions in large-scale data production. Based on collaborative group intelligence augmented by AI, we developed a collaborative augmented reconstruction (CAR) platform for neuron reconstruction at scale. This platform allows for immersive interaction and efficient collaborative editing of neuron anatomy using a variety of devices, such as desktop workstations, virtual reality headsets and mobile phones, enabling users to contribute anytime and anywhere and to take advantage of several AI-based automation tools. We tested CAR's applicability for challenging mouse and human neurons toward scaled and faithful data production.


Subject(s)
Brain , Imaging, Three-Dimensional , Neurons , Neurons/cytology , Animals , Humans , Mice , Brain/cytology , Imaging, Three-Dimensional/methods , Algorithms , Artificial Intelligence
2.
IEEE Trans Vis Comput Graph ; 30(11): 7299-7309, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39255163

ABSTRACT

Neuron tracing, alternately referred to as neuron reconstruction, is the procedure for extracting the digital representation of the three-dimensional neuronal morphology from stacks of microscopic images. Achieving accurate neuron tracing is critical for profiling the neuroanatomical structure at single-cell level and analyzing the neuronal circuits and projections at whole-brain scale. However, the process often demands substantial human involvement and represents a nontrivial task. Conventional solutions towards neuron tracing often contend with challenges such as non-intuitive user interactions, suboptimal data generation throughput, and ambiguous visualization. In this paper, we introduce a novel method that leverages the power of extended reality (XR) for intuitive and progressive semi-automatic neuron tracing in real time. In our method, we have defined a set of interactors for controllable and efficient interactions for neuron tracing in an immersive environment. We have also developed a GPU-accelerated automatic tracing algorithm that can generate updated neuron reconstruction in real time. In addition, we have built a visualizer for fast and improved visual experience, particularly when working with both volumetric images and 3D objects. Our method has been successfully implemented with one virtual reality (VR) headset and one augmented reality (AR) headset with satisfying results achieved. We also conducted two user studies and proved the effectiveness of the interactors and the efficiency of our method in comparison with other approaches for neuron tracing.


Subject(s)
Algorithms , Computer Graphics , Imaging, Three-Dimensional , Neurons , Neurons/cytology , Imaging, Three-Dimensional/methods , Animals , Humans , Brain/cytology , Brain/diagnostic imaging , Mice
SELECTION OF CITATIONS
SEARCH DETAIL