Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant Pathol ; 24(1): 59-70, 2023 01.
Article in English | MEDLINE | ID: mdl-36305370

ABSTRACT

Southern rice black-streaked dwarf virus (SRBSDV; Fijivirus, Reoviridae) has become a threat to cereal production in East Asia in recent years. Our previous cytopathologic studies have suggested that SRBSDV induces a process resembling programmed cell death in infected tissues that results in distinctive growth abnormalities. The viral product responsible for the cell death, however, remains unknown. Here P9-2 protein, but not its RNA, was shown to induce cell death in Escherichia coli and plant cells when expressed either locally with a transient expression vector or systemically using a heterologous virus. Both computer prediction and fluorescent assays indicated that the viral nonstructural protein was targeted to the plasma membrane (PM) and further modification of its subcellular localization abolished its ability to induce cell death, indicating that its PM localization was required for the cell death induction. P9-2 was predicted to harbour two transmembrane helices within its central hydrophobic domain. A series of mutation assays further showed that its central transmembrane hydrophobic domain was crucial for cell death induction and that its conserved F90, Y101, and L103 amino acid residues could play synergistic roles in maintaining its ability to induce cell death. Its homologues in other fijiviruses also induced cell death in plant and bacterial cells, implying that the fijiviral nonstructural protein may trigger cell death by targeting conserved cellular factors or via a highly conserved mechanism.


Subject(s)
Oryza , Oryza/metabolism , Viral Nonstructural Proteins/genetics , Cell Death , Plant Diseases
2.
Front Plant Sci ; 12: 644437, 2021.
Article in English | MEDLINE | ID: mdl-33959140

ABSTRACT

Rice blast is one of the most serious diseases of rice and a major threat to rice production. Breeding disease-resistant rice is one of the most economical, safe, and effective measures for the control of rice blast. As a complement to traditional crop breeding, the transgenic method can avoid the time-consuming process of crosses and multi-generation selection. In this study, maize (Zea mays) Activator (Ac)/Dissociation (Ds) transposon vectors carrying green fluorescent protein (GFP) and red fluorescent protein (mCherry) genetic markers were used for generating marker-free transgenic rice. Double fluorescent protein-aided counterselection against the presence of T-DNA was performed together with polymerase chain reaction (PCR)-based positive selection for the gene of interest (GOI) to screen marker-free progeny. We cloned an RNAi expression cassette of the rice Pi21 gene that negatively regulates resistance to rice blast as a GOI into the Ds element in the Ac/Ds vector and obtained marker-free T1 rice plants from 13 independent transgenic lines. Marker-free and Ds/GOI-homozygous rice lines were verified by PCR and Southern hybridization analysis to be completely free of transgenic markers and T-DNA sequences. qRT-PCR analysis and rice blast disease inoculation confirmed that the marker-free transgenic rice lines exhibited decreased Pi21 expression levels and increased resistance to rice blast. TAIL-PCR results showed that the Ds (Pi21-RNAi) transgenes in two rice lines were reintegrated in intergenic regions in the rice genome. The Ac/Ds vector with dual fluorescent protein markers offers more reliable screening of marker-free transgenic progeny and can be utilized in the transgenic breeding of rice disease resistance and other agronomic traits.

3.
Front Plant Sci ; 7: 1834, 2016.
Article in English | MEDLINE | ID: mdl-28008334

ABSTRACT

Rice blast disease is one of the most destructive rice diseases worldwide. The pi21 gene confers partial and durable resistance to Magnaporthe oryzae. However, little is known regarding the molecular mechanisms of resistance mediated by the loss-of-function of Pi21. In this study, comparative transcriptome profiling of the Pi21-RNAi transgenic rice line and Nipponbare with M. oryzae infection at different time points (0, 12, 24, 48, and 72 hpi) were investigated using RNA sequencing. The results generated 43,222 unique genes mapped to the rice genome. In total, 1109 differentially expressed genes (DEGs) were identified between the Pi21-RNAi line and Nipponbare with M. oryzae infection, with 103, 281, 209, 69, and 678 DEGs at 0, 12, 24, 48, and 72 hpi, respectively. Functional analysis showed that most of the DEGs were involved in metabolism, transport, signaling, and defense. Among the genes assigned to plant-pathogen interaction, we identified 43 receptor kinase genes associated with pathogen-associated molecular pattern recognition and calcium ion influx. The expression levels of brassinolide-insensitive 1, flagellin sensitive 2, and elongation factor Tu receptor, ethylene (ET) biosynthesis and signaling genes, were higher in the Pi21-RNAi line than Nipponbare. This suggested that there was a more robust PTI response in Pi21-RNAi plants and that ET signaling was important to rice blast resistance. We also identified 53 transcription factor genes, including WRKY, NAC, DOF, and ERF families that show differential expression between the two genotypes. This study highlights possible candidate genes that may serve a function in the partial rice blast resistance mediated by the loss-of-function of Pi21 and increase our understanding of the molecular mechanisms involved in partial resistance against M. oryzae.

4.
Mol Plant Pathol ; 12(8): 808-14, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21726383

ABSTRACT

A rice cDNA library was screened by a galactosidase 4 (Gal4)-based yeast two-hybrid system with Rice stripe virus (RSV) p2 as bait. The results revealed that RSV p2 interacted with a rice protein exhibiting a high degree of identity with Arabidopsis thaliana suppressor of gene silencing 3 (AtSGS3). The interaction was confirmed by bimolecular fluorescence complementation assay. SGS3 has been shown to be involved in sense transgene-induced RNA silencing and in the biogenesis of trans-acting small interfering RNAs (ta-siRNAs), possibly functioning as a cofactor of RNA-dependent RNA polymerase 6 (RDR6). Given the intimate relationships between virus and RNA silencing, further experiments were conducted to show that p2 was a silencing suppressor. In addition, p2 enhanced the accumulation and pathogenicity of Potato virus X in Nicotiana benthamiana. Five genes that have been demonstrated to be targets of TAS3-derived ta-siRNAs were up-regulated in RSV-infected rice. The implications of these findings are discussed.


Subject(s)
Oryza/metabolism , Oryza/microbiology , Plant Proteins/metabolism , Tenuivirus/pathogenicity , Amino Acid Sequence , Gene Library , Molecular Sequence Data , Oryza/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , RNA Interference/physiology , Sequence Homology, Amino Acid , Tenuivirus/genetics , Two-Hybrid System Techniques
5.
Virus Res ; 159(1): 62-8, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21565229

ABSTRACT

Plant viruses utilize movement proteins to gain access to plasmodesmata (PD) for cell-to-cell propagation. While the NSvc4 protein of Rice stripe virus (RSV) is implicated in the passage of viruses from cell to cell, its role remains to be elucidated. We examined the mechanisms by which RSV NSvc4 is targeted to PD in cell walls. NSvc4 accumulated at PD when expressed as a fusion with yellow fluorescent protein in leaf cells of Nicotiana benthamiana. NSvc4 was targeted to PD via the endoplasmic reticulum-to-Golgi secretory pathway, and the actomyosin motility system was required for the delivery of NSvc4 to PD. Moreover, it appeared that NSvc4 utilized myosin VIII-1 rather than myosin XI for trafficking to PD. Taken together, our data reveal that the targeting of NSvc4 to PD exploits the early secretory pathway and the actin-myosin VIII motility system in the leaves of a non-host plant, N. benthamiana.


Subject(s)
Actins/metabolism , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Myosins/metabolism , Plasmodesmata/metabolism , Tenuivirus/pathogenicity , Viral Nonstructural Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genes, Reporter , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Plant Leaves/virology , Plant Proteins/metabolism , Protein Transport , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Nicotiana/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...