Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 15: 1339907, 2024.
Article in English | MEDLINE | ID: mdl-38952870

ABSTRACT

Introduction: Several fluorescent proteins (FPs) and chromoproteins (CPs) are present in anthozoans and play possible roles in photoprotection. Coral tissues in massive corals often display discoloration accompanied by inflammation. Incidences of the pink pigmentation response (PPR) in massive Porites, described as inflammatory pink lesions of different shapes and sizes, has recently increased worldwide. FPs are reported to be present in PPR lesions, wherein a red fluorescent protein (RFP) appears to play a role in reducing reactive oxygen species. However, to date, the biochemical characterization and possible roles of the pigments involved are poorly understood. The present study aimed to identify and characterize the proteins responsible for pink discoloration in massive Porites colonies displaying PPRs, as well as to assess the differential distribution of pigments and the antioxidant properties of pigmented areas. Method: CPs were extracted from PPR lesions using gel-filtration chromatography and identified via genetic analysis using liquid chromatography-tandem mass spectrometry. The coexistence of CPs and RFP in coral tissues was assessed using microscopic observation. Photosynthetic antivity and hydrogen peroxide-scavenging activitiy were measured to assess coral stress conditions. Results: The present study revealed that the same CP (plut2.m8.16902.m1) isolated from massive Porites was present in both the pink spot and patch morphologies of the PPR. CPs were also found to coexist with RFP in coral tissues that manifested a PPR, with a differential distribution (coenosarc or tip of polyps' tentacles). High hydrogen peroxide-scavenging rates were found in tissues affected by PPR. Discussion and Conclusion: The coexistence of CPs and RFP suggests their possible differential role in coral immunity. CPs, which are specifically expressed in PPR lesions, may serve as an antioxidant in the affected coral tissue. Overall, this study provides new knowledge to our understanding of the role of CPs in coral immunity.

2.
Mar Pollut Bull ; 198: 115824, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38039572

ABSTRACT

Nutrient inputs to coastal waters are among the main contributors to phytoplankton blooms that can damage coastal ecosystems. To understand the main causal factors and timing of phytoplankton blooms in Patong Bay, where phytoplankton blooms have frequent occurred for the last decade, variations in phytoplankton abundance and the dissolved inorganic nutrients (nitrogen (DIN), phosphorus (DIP), and dissolved silica (DSi)) were monitored weekly from December 2021 to December 2022. The results revealed that ratios of DIP and DSi to DIN in seawater had increased rapidly in approximately 1-7 days prior to the blooms of Chaetoceros and Eunotogramma. This suggests that the diatom blooms in this area are significantly controlled by an excess of DIP and DSi, in otherwise appropriate environmental conditions. Our findings provide a thorough understanding of the role of excess nutrients on phytoplankton blooms in urban coastal waters, supporting informed coastal management actions.


Subject(s)
Diatoms , Phytoplankton , Bays , Ecosystem , Thailand , Nutrients , Nitrogen/analysis , Eutrophication , Environmental Monitoring/methods
3.
PeerJ ; 11: e14861, 2023.
Article in English | MEDLINE | ID: mdl-36785706

ABSTRACT

Background: Microplastics (MPs) are pollutants in rivers and marine environments. Rivers can be sources and sinks of MPs that enter the biota. Previous studies focusing on freshwater species are quite limited, especially for gastropods. Freshwater gastropods are essential to aquatic ecosystems because they are food to other aquatic animals, such as fish, shrimp, and crabs. They are a crucial link in the food chain between water resources and human food. Therefore, this study aimed to investigate MP accumulation in freshwater gastropods, commonly known as snails (Filopaludina sumatrensis speciosa and Pomacea canaliculata), in a river flowing into a shallow coastal lagoon. Method: In this study, snail tissue samples were digested with 30% hydrogen peroxide. The mixture was heated at 60 °C for 24 h. MP particles were identified, counted, and characterized (shape, size, and color) by visual identification under a stereomicroscope. Furthermore, polymer-type identification was performed using Fourier transform infrared spectroscopy (FTIR). Analysis of variance (ANOVA) was applied for the statistical analysis. Results: The MPs found were as follows: 4.76 particles/individual were found in F. sumatrensis speciosa upstream, 5.20 particles/individual were found in F. sumatrensis speciosa downstream, 7.28 particles/individual were found in P. canaliculata upstream, and 4.00 particles/individual were found in P. canaliculata downstream. It was found in the two-way ANOVA that the accumulation of MPs in gastropods was affected by species and study sites (upstream and downstream). There was a significant difference in the amount of MPs in P. canaliculata between upstream and downstream sites (p = 0.003). Fibers were the most common MPs in both species. Moreover, P. canaliculata upstream had the most significant amount of MPs. The smallest amount of MPs was recorded for P. canaliculata downstream, but there was great diversity in shape, size, and polymer type. MPs sized 500 µm-1 mm were the most common in both species. Fourier transform infrared spectroscopy revealed six polymers: poly (ethylene terephthalate), polypropylene, rayon, polyethyleneimine, polyamine, and poly (propylene: ethylene). The occurrence of MPs in gastropods is alarming for food security in Thailand. The results of this study can be used to support baseline data on MP accumulation among freshwater gastropods.


Subject(s)
Gastropoda , Water Pollutants, Chemical , Animals , Humans , Microplastics/analysis , Plastics/analysis , Ecosystem , Thailand , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Fresh Water
SELECTION OF CITATIONS
SEARCH DETAIL