Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 270
Filter
1.
J Med Chem ; 67(11): 9028-9053, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38787534

ABSTRACT

This work identified a class of cyanomethylquinolones (CQs) and their carboxyl analogues as potential multitargeting antibacterial candidates. Most of the prepared compounds showed high antibacterial activities against most of the tested bacteria, exhibiting lower MIC values (0.125-2 µg/mL) than those of clinical norfloxacin, ciprofloxacin, and clinafloxacin. The low hemolysis, drug resistance, and cytotoxicity, as well as good predictive pharmacokinetics of active CQs and carboxyl analogues revealed their development potential. Furthermore, they could eradicate the established biofilm, facilitating bacterial exposure to these antibacterial candidates. These active compounds could induce bacterial death through multitargeting effects, including intercalating into DNA, up-regulating reactive oxygen species, damaging membranes directly, and impeding metabolism. Moreover, the highly active cyclopropyl CQ 15 exhibited more effective in vivo anti-MRSA potency than ciprofloxacin. These findings highlight the potential of CQs and their carboxyl analogues as multitargeting broad-spectrum antibacterial candidates for treating intractable bacterial infections.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Quinolones , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Animals , Quinolones/pharmacology , Quinolones/chemistry , Quinolones/chemical synthesis , Humans , Structure-Activity Relationship , Biofilms/drug effects , Mice , Hemolysis/drug effects , Reactive Oxygen Species/metabolism , Ciprofloxacin/pharmacology , Ciprofloxacin/chemistry , Ciprofloxacin/analogs & derivatives , Methicillin-Resistant Staphylococcus aureus/drug effects
2.
Eur J Med Chem ; 270: 116392, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38608408

ABSTRACT

The emergence of serious bacterial resistance towards clinical oxacins poses a considerable threat to global public health, necessitating the development of novel structural antibacterial agents. Seven types of novel indolylacryloyl-derived oxacins (IDOs) were designed and synthesized for the first time from commercial 3,4-difluoroaniline via an eight-step procedure. The synthesized compounds were characterized by modern spectroscopic techniques. All target molecules were evaluated for antimicrobial activities. Most of the prepared IDOs showed a broad antibacterial spectrum and strong activities against the tested strains, especially ethoxycarbonyl IDO 10d (0.25-0.5 µg/mL) and hydroxyethyl IDO 10e (0.25-1 µg/mL) exhibited much superior antibacterial efficacies to reference drug norfloxacin. These highly active IDOs also displayed low hemolysis, cytotoxicity and resistance, as well as rapid bactericidal capacity. Further investigations indicated that ethoxycarbonyl IDO 10d and hydroxyethyl IDO 10e could effectively reduce the exopolysaccharide content and eradicate the formed biofilm, which might delay the development of drug resistance. Preliminary exploration of the antibacterial mechanism revealed that active IDOs could not only destroy membrane integrity, resulting in changes in membrane permeability, but also promote the accumulation of reactive oxygen species, leading to the production of malondialdehyde and decreased bacterial metabolism. Moreover, they exhibited the capability to bind with DNA and DNA gyrase, forming supramolecular complexes through various noncovalent interactions, thereby inhibiting DNA replication and causing bacterial death. All the above results suggested that the newly developed indolylacryloyl-derived oxacins should hold great promise as potential multitargeting broad-spectrum antibacterial candidates to overcome drug resistance.


Subject(s)
Anti-Bacterial Agents , Norfloxacin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Norfloxacin/pharmacology , Bacteria , Cell Membrane Permeability , DNA/pharmacology , Microbial Sensitivity Tests
3.
Food Chem (Oxf) ; 8: 100195, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38327512

ABSTRACT

This study investigated the effects of wheat lipoxygenase isozyme III (LOX III) and its truncated form, Mini-LOX III, on flour dough properties using yeast-expressed recombinant enzymes and hypothesized their potential to enhance cereal-based food quality. These enzymes actively catalyze linoleic acid, which is crucial for dough formation. The addition of recombinant LOX III and Mini-LOX III to wheat flour significantly changed glutenin protein composition. An increase in the amount of soluble glutenin and a shift in polypeptide distribution were observed, marked by a decrease in the high-molecular-weight regions and an increase in the low-molecular-weight regions. This result reflects the role of enzymes in altering the hydrophobicity of glutenin surfaces, thereby affecting the protein solubility and dough properties. Thus, recombinant LOX III and Mini-LOX III offer new avenues for enhancing the texture and quality of cereal-based foods, providing valuable insights into the role of wheat LOX in flour processing and its potential industrial applications.

4.
Acta Pharmaceutica Sinica ; (12): 350-358, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1016659

ABSTRACT

Due to the high similarity with the lipid layer between human skin keratinocytes, functional cosmetics with layered liquid crystal structure prepared by liquid crystal emulsification technology encapsulating natural active substances have become a hot research topic in recent years. This type of functional cosmetic often has a fresh and natural skin feel, excellent skin barrier repair function and efficient moisturizing effect, etc., showing great potential in cosmetic application. However, the present research on the application of liquid crystal emulsification technology to functional cosmetics is still in the initial stage, and there are fewer relevant reports with reference values. Based on the mentioned above, this review provides a comprehensive summary of functional cosmetics with layered liquid crystal structures prepared by liquid crystal emulsification technology from the following aspects: the structure of human skin, the composition of lamellar liquid crystal, the advantages of liquid crystal emulsification technology containing natural active substances used in the field of functional cosmetics, the preparation process, main components, influencing factors during the preparation and the market functional cosmetics with lamellar liquid crystal structure. Finally, the prospect of the application of liquid crystal emulsification technology in functional cosmetics is presented, to provide useful references for those engaged in the research of liquid crystal emulsification technology-related functional cosmetics.

5.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1016429

ABSTRACT

The incidence of infertility disorders is increasing year by year, affecting about 12-15% of women of reproductive age worldwide. Polycystic ovary syndrome (PCOS) is one of the common causes of infertility. In recent years, the incidence rate of PCOS has increased year by year, but the improvement of endocrine and metabolic dysfunction and pregnancy outcomes in patients with PCOS are not satisfactory. There is a consensus both domestically and internationally that improving metabolic function and endocrine abnormalities in PCOS patients can increase their pregnancy rate. Therefore, it is important to explore the improvement of metabolic function in patients with PCOS. This article reviews the progress of basic research on improving metabolic function in patients with PCOS.

6.
Chinese Pharmacological Bulletin ; (12): 521-528, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013645

ABSTRACT

Aim To investigate the protective effect of dimethyl fumarate on spleen injury induced by gamma radiation in mice and the related mechanism. Methods C57BL/6 mice were randomly divided into the blank control group, radiation model group and DMF administration group, which were administered once at 12 h before irradiation and once at 0. 5 h, 12 h, 24 h and 48 h after irradiation. The 30-day survival rate, body weight and pathological injury of spleen were measured after a one-time total body irradiation of Co 7 rays (8 Gy). TUNEL staining was used to detect apoptosis of spleen cells. Enzyme-linked immunoassay ( ELISA) was applied to detect the contents of TNF-a, IL-1 p, IL-6, IL-18, NLRP3 and AIM2 in spleen. Western blot test and immunofluorescence staining test was employed to verify the changes of NLRP3 and AIM2 contents in spleen tissue after irradiation. Results DMF could obviously improve the survival rate of irradiated mice, improve the weight loss of irradiated mice, re-duce the pathological injury of spleen, and inhibit the apoptosis of spleen cells after irradiation. ELISA results showed that DMF could significantly inhibit the increase of spleen inflammatory cytokines TNF-a, IL-lp, IL-6, IL-18 and inflammasome components NL-RP3 and AIM2 induced by irradiation. Western blot and tissue immunofluorescence staining also confirmed that DMF could inhibit the increase of NLRP3 and AIM2 inflammasome protein levels caused by irradiation. Meanwhile, NLRP3 agonist and AIM2 agonist could antagonize the radiation protection effect of DMF on spleen cells. Conclusion DMF can ameliorate spleen injury of Co 7-ray injured mice, and its mechanism is closely related to NLRP3/AIM2 inflamma-somes, which can be used as a potential protective drug for radiation injury.

7.
Neuroscience Bulletin ; (6): 182-200, 2024.
Article in English | WPRIM (Western Pacific) | ID: wpr-1010654

ABSTRACT

Intermittent theta burst stimulation (iTBS), a time-saving and cost-effective repetitive transcranial magnetic stimulation regime, has been shown to improve cognition in patients with Alzheimer's disease (AD). However, the specific mechanism underlying iTBS-induced cognitive enhancement remains unknown. Previous studies suggested that mitochondrial functions are modulated by magnetic stimulation. Here, we showed that iTBS upregulates the expression of iron-sulfur cluster assembly 1 (ISCA1, an essential regulatory factor for mitochondrial respiration) in the brain of APP/PS1 mice. In vivo and in vitro studies revealed that iTBS modulates mitochondrial iron-sulfur cluster assembly to facilitate mitochondrial respiration and function, which is required for ISCA1. Moreover, iTBS rescues cognitive decline and attenuates AD-type pathologies in APP/PS1 mice. The present study uncovers a novel mechanism by which iTBS modulates mitochondrial respiration and function via ISCA1-mediated iron-sulfur cluster assembly to alleviate cognitive impairments and pathologies in AD. We provide the mechanistic target of iTBS that warrants its therapeutic potential for AD patients.


Subject(s)
Humans , Mice , Animals , Transcranial Magnetic Stimulation , Alzheimer Disease/therapy , Cognitive Dysfunction/therapy , Cognition , Sulfur , Iron , Iron-Sulfur Proteins , Mitochondrial Proteins
8.
Materials (Basel) ; 16(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36984269

ABSTRACT

This study proposes a low-temperature transient liquid phase bonding (TLPB) method using Sn58Bi/porous Cu/Sn58Bi to enable efficient power-device packaging at high temperatures. The bonding mechanism is attributed to the rapid reaction between porous Cu and Sn58Bi solder, leading to the formation of intermetallic compounds with high melting point at low temperatures. The present paper investigates the effects of bonding atmosphere, bonding time, and external pressure on the shear strength of metal joints. Under formic acid (FA) atmosphere, Cu6Sn5 forms at the porous Cu foil/Sn58Bi interface, and some of it transforms into Cu3Sn. External pressure significantly reduces the micropores and thickness of the joint interconnection layer, resulting in a ductile fracture failure mode. The metal joint obtained under a pressure of 10 MPa at 250 °C for 5 min exhibits outstanding bonding mechanical performance with a shear strength of 62.2 MPa.

9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-970911

ABSTRACT

OBJECTIVE@#To explore the genetic characteristics of a fetus with a high risk by maternal serum screening during the second trimester.@*METHODS@#Genetic counseling was provided to the pregnant woman on March 22, 2020 at Henan Provincial People's Hospital. G-banded chromosomal karyotyping and array comparative genomic hybridization (aCGH) were carried out on the amniotic fluid sample and peripheral blood samples from the couple.@*RESULTS@#The fetus and the pregnant woman were respectively found to have a 46,XX,der(6)t(6;14)(q27;q31.2) and 46,XX,t(6;14)(q27;q31.2) karyotype, whilst the husband was found to have a normal karyotype. aCGH analysis has identified a 6.64 Mb deletion at 6q26q27 and a 19.98 Mb duplication at 14q31.3q32.33 in the fetus, both of which were predicted to be pathogenic copy number variations. No copy number variation was found in the couple.@*CONCLUSION@#The unbalanced chromosome abnormalities in the fetus have probably derived from the balanced translocation carried by the pregnant woman. aCGH can help to determine the types of fetal chromosome abnormalities and site of chromosomal breakage, which may facilitate the prediction of fetal outcome and choice for subsequent pregnancies.


Subject(s)
Pregnancy , Female , Humans , Comparative Genomic Hybridization , DNA Copy Number Variations , Translocation, Genetic , Chromosome Aberrations , Fetus , Prenatal Diagnosis
10.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-996914

ABSTRACT

Diabetic nephropathy (DN) is a common microvascular complication of type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM),which is also the main cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD). However, the treatment methods are limited at present. More and more evidences have indicated that inflammatory response is involved in the pathogenesis and progression of DN. Several anti-inflammatory strategies that target specific inflammatory mediators (transcription factors, pro-inflammatory cytokines, chemokines, adhesion molecules) and intracellular signaling pathways have shown benefits in the DN rodent model. The mechanisms related to inflammation in the development and progression of DN were summarized and new strategies to prevent or treat DN based on inflammation were briefly discussed in this review.

11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-995059

ABSTRACT

Objective:To analyze the genetic etiology and prognosis in fetuses with increased nuchal translucency (NT) in order to assist in the clinical prenatal genetic counseling and diagnosis.Methods:This study retrospectively enrolled 1 658 cases of singleton pregnancy (<35 years old) receiving invasive prenatal diagnosis, including karyotype analysis and/or chromosome microarray analysis or copy number variation (CNV) sequencing, due to NT value ≥2.5 mm in the first trimester in Henan Provincial People's Hospital from August 2014 to December 2021. They were divided into different groups according to the thickness of NT (≥2.5-<3.0, ≥3.0-<3.5, ≥3.5-<4.5, ≥4.5-<5.5, ≥5.5-<6.5 and ≥6.5 mm groups) and abnormal ultrasound findings (isolated increased NT group, increased NT complicated by soft markers/non-severe structural abnormality group and increased NT complicated by severe structural abnormality group). The results of invasive prenatal diagnosis and pregnancy outcomes were compared between different groups using Chi-square test and trend Chi-square test. Results:The detection rates of numerical abnormalities of chromosomes were 15.8% (262/1 658) and 17.6% (252/1 431) when the NT thickness cut-off value were 2.5 mm or 3.0 mm, respectively. Overall, the detection rate of numerical abnormalities of chromosomes increased with thickness of NT ( χ2trend=180.75, P<0.001), ranging from 6.6% (44/671) in the NT≥2.5-<3.5 mm group to 45.6% (113/248) in the NT≥5.5 mm group. The incidence of pathogenic/likely pathogenic CNV(P/LP CNV) did not increased with NT thickness ( χ2trend=3.26, P=0.071), and the highest detection rate was observed in the NT≥4.5-<5.5 mm group (9.0%, 19/211). The detection rate of numerical abnormalities of chromosomes plus P/LP CNV in the isolated NT≥2.5-<3.0 mm group and NT≥3.0-<3.5 mm group were 5.3% (10/188) and 9.6% (36/375), respectively, however, the difference was not statistically significant ( χ2=3.06, P=0.080). The detection rates of numerical abnormalities of chromosomes plus P/LP CNV in the isolated NT≥3.5-<4.5 mm group and NT≥2.5-<3.0 mm complicated by soft markers/ non-severe structural abnormality group were 12.7% (52/410) and 24.1% (7/29), respectively, and the risk were 2.6 times (95% CI: 1.3-5.2) and 5.7 times (95% CI: 2.0-16.4) of the isolated NT≥2.5-<3.0 mm group, respectively. The pregnancy termination rate increased with the NT thickness ( χ2trend=304.42, P<0.001), ranging from 10.8% (23/212) in the NT≥2.5-<3.0 mm group to 90.7% (117/129) in the NT≥6.5 mm group. After exclusion of the pregnancies terminated due to numerical abnormalities of chromosomes and P/LP CNV, 87.6% (862/984) of the fetus with increased NT were born alive. Conclusions:The detection rate of numerical abnormalities of chromosomes increases with the thickness of NT. Invasive prenatal diagnosis is required for non-advance aged singleton pregnant women when fetuses present with isolated NT≥2.5 mm with or without soft markers/structural abnormalities.

12.
Chinese Pharmacological Bulletin ; (12): 580-587, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013842

ABSTRACT

Aim To study the hypnotic effect and safety of compound anshen essential oil. Methods Gas chromatograph-mass spectrometer (GC-MS) was used to analyze the main active components of compound anshen essential oil. The mouse model of insomnia was established by intraperitoneal injection of para-chloro-phenyl alanine ( PC PA ) , combined with pentobarbital sodium sleep experiment and EEG characteristic monitoring in rats to study the hypnotic effect and mechanism. The safety of compound anshen essential oil was evaluated by acute toxicity test, skin irritation/allergy test and 90-day repeated administration toxicity test. The clinical effect and safety were evaluated by using the sleep monitoring technology for micro-motion sensitive mattress. Results Four components, including Atractylone (34.61%), (+) -Limonene (17.80%) , Linalool (11.63%), and Ocimene (11.67%) , were detected as the main active components of compound anshen essential oil. Compound anshen essential oil in-halation administration for seven days could effectively reduce the autonomic activity of insomnia mice, shorten the sleep latency (P <0.05) , improve the sleep duration, increase of neurotransmitters such as 5-hydroxy tryptamine (5-HT) and -γ-aminobutyric acid (GABA) in brain of mice with insomnia, and the medium dose group had better hypnotic effect. There was no death or adverse reaction in the safety evaluation test. The sleep balance index of 10 subjects with difficulty in falling a-sleep significantly increased (P <0.05), sleep latency was significantly shortened (P <0.05) , total sleep duration and sleep efficiency were improved, and no ad¬verse reactions were found after using the compound anshen essential oil for two days. Conclusions The compound anshen essential oil developed by the research team is safe and effective in relieving sleep disorders, which may be closely related to the co-regulation of the levels of neurotransmitters such as 5-HT and GABA by the four main active components.

13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1009242

ABSTRACT

OBJECTIVE@#To investigate the clinical phenotype and genetic characteristics of a Chinese pedigree affected with Cohen syndrome.@*METHODS@#A proband who was admitted to Zhengzhou People's Hospital on June 2, 2021 due to intellectual disability and developmental delay, in addition with her younger sister and other family members, were selected as the study subjects. Clinical data of the proband and her younger sister were collected. Genomic DNA was extracted from peripheral venous blood and chorionic villi samples. Chromosomal abnormalities were detected with chromosomal microarray analysis (CMA). Whole exome sequencing (WES) and Sanger sequencing were carried out to detect candidate variants in the proband. With RNA extracted from the peripheral blood samples, VPS13B gene transcripts and expression were analyzed by PCR and real-time quantitative PCR. Prenatal diagnosis was carried out at 12 weeks' gestation.@*RESULTS@#The proband was a 10-year-old female with clinical manifestations including development delay, obesity, severe myopia and peculiar facial features. Her sister was 3 years old with a similar phenotype. CMA revealed no chromosomal abnormality in the proband, while WES results revealed that the proband and her sister had both harbored compound heterozygous variants of the VPS13B gene, namely c.10076_10077delCA (p.T3359fs*29) and c.6940+1G>T, which were respectively inherited from their mother and father. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), both variants were classified as pathogenic (PVS1+PS4+PM4+PP1; PVS1+PM2_Supporting+PM3+PP1). In vivo splicing assay confirmed that the c.6940+1G>T variant has produced a frameshift transcript with skipping of exon 38. Compared with the control group, the expression of RNA in the peripheral blood of the proband's parents has decreased to 65% ~ 70% (P < 0.01), whilst that in the proband and her sister has decreased to 40% (P < 0.001). Prenatal diagnosis at 12 weeks of gestation has found that the fetus only harbored the heterozygous c.10076_ 10077delCA variant.@*CONCLUSION@#The c.10076_10077delCA (p.T3359fs*29) frameshift variant and c.6940+1G>T splicing variant probably underlay the Cohen syndrome in this pedigree. Genetic testing has facilitated the diagnosis of this disease.


Subject(s)
Female , Humans , Child, Preschool , Child , East Asian People , Intellectual Disability/genetics , Mutation , Myopia/genetics , Pedigree , Vesicular Transport Proteins/genetics
14.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-973685

ABSTRACT

Heart failure (HF) is a global public health problem with high morbidity and mortality. Numerous studies have shown that HF is caused by severe disturbance of energy metabolism, resulting in insufficient cardiac energy supply. This lack of energy could lead to a failure of the heart to pump blood and a failure of energy metabolism in other organs throughout the body. Currently, therapeutics of HF work by reducing heart rate and cardiac preload and afterload, symptomatic treatment, or delaying the progression of the disease. However, drugs targeting heart energy metabolism have not been developed. the main characteristics of cardiac energy metabolism, metabolic changes during HF were summarized and drugs that improve cardiac function through energy metabolism were discussed, which could provide a new research direction for the development and application of drugs in treatment of heart failure.

15.
Acta Pharmaceutica Sinica B ; (6): 1588-1599, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-982812

ABSTRACT

Liver is the central hub regulating energy metabolism during feeding-fasting transition. Evidence suggests that fasting and refeeding induce dynamic changes in liver size, but the underlying mechanisms remain unclear. Yes-associated protein (YAP) is a key regulator of organ size. This study aims to explore the role of YAP in fasting- and refeeding-induced changes in liver size. Here, fasting significantly reduced liver size, which was recovered to the normal level after refeeding. Moreover, hepatocyte size was decreased and hepatocyte proliferation was inhibited after fasting. Conversely, refeeding promoted hepatocyte enlargement and proliferation compared to fasted state. Mechanistically, fasting or refeeding regulated the expression of YAP and its downstream targets, as well as the proliferation-related protein cyclin D1 (CCND1). Furthermore, fasting significantly reduced the liver size in AAV-control mice, which was mitigated in AAV Yap (5SA) mice. Yap overexpression also prevented the effect of fasting on hepatocyte size and proliferation. Besides, the recovery of liver size after refeeding was delayed in AAV Yap shRNA mice. Yap knockdown attenuated refeeding-induced hepatocyte enlargement and proliferation. In summary, this study demonstrated that YAP plays an important role in dynamic changes of liver size during fasting-refeeding transition, which provides new evidence for YAP in regulating liver size under energy stress.

16.
Protein & Cell ; (12): 579-590, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-982527

ABSTRACT

Platelets are reprogrammed by cancer via a process called education, which favors cancer development. The transcriptional profile of tumor-educated platelets (TEPs) is skewed and therefore practicable for cancer detection. This intercontinental, hospital-based, diagnostic study included 761 treatment-naïve inpatients with histologically confirmed adnexal masses and 167 healthy controls from nine medical centers (China, n = 3; Netherlands, n = 5; Poland, n = 1) between September 2016 and May 2019. The main outcomes were the performance of TEPs and their combination with CA125 in two Chinese (VC1 and VC2) and the European (VC3) validation cohorts collectively and independently. Exploratory outcome was the value of TEPs in public pan-cancer platelet transcriptome datasets. The AUCs for TEPs in the combined validation cohort, VC1, VC2, and VC3 were 0.918 (95% CI 0.889-0.948), 0.923 (0.855-0.990), 0.918 (0.872-0.963), and 0.887 (0.813-0.960), respectively. Combination of TEPs and CA125 demonstrated an AUC of 0.922 (0.889-0.955) in the combined validation cohort; 0.955 (0.912-0.997) in VC1; 0.939 (0.901-0.977) in VC2; 0.917 (0.824-1.000) in VC3. For subgroup analysis, TEPs exhibited an AUC of 0.858, 0.859, and 0.920 to detect early-stage, borderline, non-epithelial diseases and 0.899 to discriminate ovarian cancer from endometriosis. TEPs had robustness, compatibility, and universality for preoperative diagnosis of ovarian cancer since it withstood validations in populations of different ethnicities, heterogeneous histological subtypes, and early-stage ovarian cancer. However, these observations warrant prospective validations in a larger population before clinical utilities.


Subject(s)
Humans , Female , Blood Platelets/pathology , Biomarkers, Tumor/genetics , Ovarian Neoplasms/pathology , China
17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-981840

ABSTRACT

OBJECTIVE@#To explore the genetic etiology of two patients with developmental delay and intellectual disability.@*METHODS@#Two children who were respectively admitted to Henan Provincial People's Hospital on August 29, 2021 and August 5, 2019 were selected as the study subjects. Clinical data were collected, and array comparative genomic hybridization (aCGH) was carried out on the children and their parents for the detection of chromosomal microduplication/microdeletions.@*RESULTS@#Patient 1 was a 2-year-and-10-month female and patient 2 was a 3-year-old female. Both children had featured developmental delay, intellectual disability, and abnormal findings on cranial MRI. aCGH revealed that patient 1 has harbored arr[hg19] 6q14.2q15(84621837_90815662)×1, a 6.19 Mb deletion at 6q14.2q15, which encompassed ZNF292, the pathogenic gene for Autosomal dominant intellectual developmental disorder 64. Patient 2 has harbored arr[hg19] 22q13.31q13.33(46294326_51178264)×1, a 4.88 Mb deletion at 22q13.31q13.33 encompassing the SHANK3 gene, haploinsufficiency of which can lead to Phelan-McDermid syndrome. Both deletions were classified as pathogenic CNVs based on the guidelines of American College of Medical Genetics and Genomics (ACMG) and were not found in their parents.@*CONCLUSION@#The 6q14.2q15 deletion and 22q13-31q13.33 deletion probably underlay the developmental delay and intellectual disability in the two children, respectively. Haploinsufficiency of the ZNF292 gene may account for the key clinical features of the 6q14.2q15 deletion.


Subject(s)
Humans , Child , Female , Child, Preschool , Intellectual Disability/genetics , Comparative Genomic Hybridization , Chromosome Disorders/genetics , Chromosome Deletion , Magnetic Resonance Imaging , Chromosomes, Human, Pair 22 , Developmental Disabilities/genetics , Carrier Proteins/genetics , Nerve Tissue Proteins/genetics
18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-981779

ABSTRACT

OBJECTIVE@#To explore the genetic basis for fetus with bilateral lateral ventriculomegaly.@*METHODS@#Fetus umbilical cord blood and peripheral blood samples of its parents were collected. The fetus was subjected to chromosomal karyotyping, whilst the fetus and its parents were subjected to array comparative genomic hybridization (aCGH). The candidate copy number variation (CNV) were verified by qPCR, Application goldeneye DNA identification system was used to confirm the parental relationship.@*RESULTS@#The fetus was found to have a normal karyotype. aCGH analysis indicated that it has carried a 1.16 Mb deletion at 17p13.3, which partially overlapped with the critical region of Miller-Dieker syndrome (MDS), in addition with a 1.33 Mb deletion at 17p12 region, which is associated with hereditary stress-susceptible peripheral neuropathy (HNPP). Its mother was also found to harbor the 1.33 Mb deletion at 17p12. qPCR analysis confirmed that the expression levels of genes from the 17p13.3 and 17p12 regions were about the half of that in the normal control, as well as the maternal peripheral blood sample. Parental relationship was confirmed between the fetus and its parents. Following genetic counseling, the parents has chosen to continue with the pregnancy.@*CONCLUSION@#The fetus was diagnosed with Miller-Dieker syndrome due to the de novo deletion at 17p13.3. Ventriculomegaly may be an important indicator for prenatal ultrasonography in fetuses with MDS.


Subject(s)
Pregnancy , Female , Humans , Classical Lissencephalies and Subcortical Band Heterotopias , Comparative Genomic Hybridization , DNA Copy Number Variations , Fetus , Hydrocephalus , Prenatal Diagnosis , Chromosome Deletion
19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-981762

ABSTRACT

OBJECTIVE@#To explore the clinical features and genetic etiology of two children with intellectual developmental disorder and microcephaly with pontine and cerebellar hypoplasia (MICPCH).@*METHODS@#Two children with MICPCH who were presented at the Henan Provincial People's Hospital between April 2019 and December 2021 were selected as the study subjects. Clinical data of the two children were collected, along with peripheral venous blood samples of them and their parents, and amniotic fluid sample of the mother of child 1. Whole exome sequencing (WES), array-comparative genomic hybridization (aCGH) and real-time quantitative PCR (qPCR) were carried out for the children, their parents and the fetus. The pathogenicity of candidate variants were evaluated.@*RESULTS@#Child 1 was a 6-year-old girl featuring motor and language delay, whilst child 2 was a 4.5-year-old girl mainly featuring microcephaly and mental retardation. WES revealed that child 2 has harbored a 158.7 kb duplication in Xp11.4 (chrX: 41446160_41604854), which has encompassed exons 4~14 of the CASK gene. The same duplication was not found in either of her parents. aCGH revealed that child 1 has harbored a 29 kb deletion at Xp11.4 (chrX: 41637892_41666665), which encompassed exon 3 of the CASK gene. The same deletion was not found in either of her parents and the fetus. The above results were confirmed by qPCR assay. Above deletion and duplication were not found in the ExAC, 1000 Genomes and gnomAD databases. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), both variants were rated as likely pathogenic (PS2+PM2_Supporting).@*CONCLUSION@#The deletion of exon 3 and duplication of exons 4~14 of the CASK gene probably underlay the pathogenesis of MICPCH in these two children, respectively.


Subject(s)
Humans , Child , Female , Child, Preschool , Microcephaly/genetics , Developmental Disabilities/genetics , Intellectual Disability/complications , Comparative Genomic Hybridization , Mutation
20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-981384

ABSTRACT

Via network pharmacology, molecular docking, and cellular experiment, this study explored and validated the potential molecular mechanism of ginsenoside Rg_1(Rg_1) against radiation enteritis. Targets of Rg_1 and radiation enteritis were retrieved from BATMAN-TCM, SwissTargetPrediction, and GeneCards. Cytoscape 3.7.2 and STRING were employed for the construction of protein-protein interaction(PPI) network for the common targets, and screening of core targets. DAVID was used for Gene Ontology(GO) term and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment to predict the possible mechanism, followed by molecular docking of Rg_1 with core targets and cellular experiment. For the cellular experiment, ~(60)Co-γ irradiation was performed for mo-deling of IEC-6 cells, which were then treated with Rg_1, protein kinase B(AKT) inhibitor LY294002, and other drugs to verify the effect and mechanism of Rg_1. The results showed that 29 potential targets of Rg_1, 4 941 disease targets, and 25 common targets were screened out. According to the PPI network, the core targets were AKT1, vascular endothelial growth factor A(VEGFA), heat shock protein 90 alpha family class A member 1(HSP90AA1), Bcl-2-like protein 1(BCL2L1), estrogen receptor 1(ESR1), etc. The common targets were mainly involved in the GO terms such as positive regulation of RNA polymerase Ⅱ promoter transcription, signal transduction, positive regulation of cell proliferation, and other biological processes. The top 10 KEGG pathways included phosphoinositide 3-kinase(PI3K)/AKT pathway, RAS pathway, mitogen-activated protein kinase(MAPK) pathway, Ras-proximate-1(RAP1) pathway, and calcium pathway, etc. Molecular docking showed that Rg_1 had high binding affinity to AKT1, VEGFA, HSP90AA1, and other core targets. Cellular experiment indicated that Rg_1 can effectively improve cell viability and survival, decrease apoptosis after irradiation, promote the expression of AKT1 and B-cell lymphoma-extra large(BCL-XL), and inhibit the expression of the pro-apoptotic protein Bcl-2-associated X protein(BAX). In conclusion, through network pharmacology, molecular docking, and cellular experiment, this study verified the ability of Rg_1 to reduce radiation enteritis injury. The mechanism was that it regulated PI3K/AKT pathway, thereby suppressing apoptosis.


Subject(s)
Humans , Proto-Oncogene Proteins c-akt/genetics , Network Pharmacology , Ginsenosides/pharmacology , Phosphatidylinositol 3-Kinases/genetics , Vascular Endothelial Growth Factor A , Molecular Docking Simulation , Radiation Injuries , Drugs, Chinese Herbal/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...