Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Res Pract ; 11(6): 470-478, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29209457

ABSTRACT

BACKGROUND/OBJECTIVE: Orostachys japonicus A. Berger (Crassulaceae) has been used in traditional herbal medicines in Korea and other Asian countries to treat various diseases, including liver disorders. In the present study, the anti-fibrotic effects of O. japonicus extract (OJE) in cellular and experimental hepatofibrotic rat models were investigated. MATERIALS/METHODS: An in vitro hepatic stellate cells (HSCs) system was used to estimate cell viability, cell cycle and apoptosis by MTT assay, flow cytometry, and Annexin V-FITC/PI staining techniques, respectively. In addition, thioacetamide (TAA)-induced liver fibrosis was established in Sprague Dawley rats. Briefly, animals were divided into five groups (n = 8): Control, TAA, OJE 10 (TAA with OJE 10 mg/kg), OJE 100 (TAA with OJE 100 mg/kg) and silymarin (TAA with Silymarin 50 mg/kg). Fibrosis was induced by treatment with TAA (200 mg/kg, i.p.) twice per week for 13 weeks, while OJE and silymarin were administered orally two times per week from week 7 to 13. The fibrotic related gene expression serum biomarkers glutathione and hydroxyproline were estimated by RT-PCR and spectrophotometry, respectively, using commercial kits. RESULTS: OJE (0.5 and 0.1 mg/mL) and silymarin (0.05 mg/mL) treatment significantly (P < 0.01 and P < 0.001) induced apoptosis (16.95% and 27.48% for OJE and 25.87% for silymarin, respectively) in HSC-T6 cells when compared with the control group (9.09%). Further, rat primary HSCs showed changes in morphology in response to OJE 0.1 mg/mL treatment. In in vivo studies, OJE (10 and 100 mg/kg) treatment significantly ameliorated TAA-induced alterations in levels of serum biomarkers, fibrotic related gene expression, glutathione, and hydroxyproline (P < 0.05-P < 0.001) and rescued the histopathological changes. CONCLUSIONS: OJE can be developed as a potential agent for the treatment of hepatofibrosis.

2.
Mol Med Rep ; 13(1): 1019-25, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26648020

ABSTRACT

Rhus javanica Linn, a traditional medicinal herb from the family Anacardiaceae, has been used in the treatment of liver diseases, cancer, parasitic infections, malaria and respiratory diseases in China, Korea and other Asian countries for centuries. In the present study, the protective effects of R. javanica ethanolic extract (RJE) on hydrogen peroxide (H2O2)-induced oxidative stress in human Chang liver cells was investigated. The cell cytotoxicity and viability were assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The activities of superoxide dismutase (SOD) and catalase (CAT) were measured using respective enzymatic kits. Cell cycle analysis was performed using flow cytometric analysis. The protein expression levels of p53, B-cell lymphoma (Bcl)-2, Bcl-2-associated X protein (Bax) and caspase-3 were assessed by western blotting. Human Chang liver cells were treated with different concentrations (0.1, 0.3 or 0.5 mg/ml) of RJE, and were subsequently exposed to H2O2 (30 µM). Treatment with H2O2 (30 µM) significantly induced cytotoxicity (P<0.05) and reduced the viability of the Chang liver cells. However, pretreatment of the cells with RJE (0.1, 0.3 or 0.5 mg/ml) significantly increased the cell viability (P<0.001 at 0.5 mg/ml) in a concentration-dependent manner following H2O2 treatment. Furthermore, pretreatment with RJE increased the enzyme activities of SOD and CAT, and decreased the sub-G1 growth phase of the cell cycle in response to H2O2-induced oxidative stress (P<0.001 at 0.3 and 0.5 mg/ml H2O2). RJE also regulated the protein expression levels of p53, Bax, caspase-3 and Bcl-2. These results suggested that RJE may protect human Chang liver cells against oxidative damage by increasing the levels of antioxidant enzymes and regulating antiapoptotic oxidative stress mechanisms, thereby providing insights into the mechanism which underpins the traditional claims made for RJE in the treatment of liver diseases.


Subject(s)
Apoptosis/drug effects , Liver/drug effects , Oxidative Stress/genetics , Plant Extracts/administration & dosage , Caspase 3/biosynthesis , Catalase/biosynthesis , Gene Expression Regulation/drug effects , Humans , Hydrogen Peroxide/toxicity , Liver/metabolism , Oxidative Stress/drug effects , Plant Extracts/chemistry , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Rhus/chemistry , Signal Transduction/drug effects , Superoxide Dismutase/biosynthesis , Tumor Suppressor Protein p53/biosynthesis , bcl-2-Associated X Protein/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL