Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 483
Filter
1.
BMC Infect Dis ; 24(1): 1009, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300365

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV), a leading cause of lower respiratory tract infection (LRTI) among children, has resurged in the form of endemic or even pandemic in many countries and areas after the easing of COVID-19 containment measures. This study aimed to investigate the differences in epidemiological and clinical characteristics of children hospitalized for RSV infection during pre- and post-COVID-19 eras in Yunnan, China. METHODS: A total of 2553 pediatric RSV inpatients from eight hospitals in Yunnan were retrospectively enrolled in this study, including 1451 patients admitted in 2018-2019 (pre-COVID-19 group) and 1102 patients admitted in 2023 (post-COVID-19 group). According to the presence or absence of severe LRTI (SLRTI), patients in the pre- and post-COVID-19 groups were further divided into the respective severe or non-severe subgroups, thus analyzing the risk factors for RSV-associated SLRTI in the two eras. Demographic, epidemiological, clinical, and laboratory data of the patients were collected for the final analysis. RESULTS: A shift in the seasonal pattern of RSV activity was observed between the pre-and post-COVID-19 groups. The peak period of RSV hospitalizations in the pre-COVID-19 group was during January-April and October-December in both 2018 and 2019, whereas that in the post-COVID-19 group was from April to September in 2023. Older age, more frequent clinical manifestations (fever, acute otitis media, seizures), and elevated laboratory indicators [neutrophil-to-lymphocyte ratio (NLR), c-reactive protein (CRP), interleukin 6 (IL-6), co-infection rate] were identified in the post-COVID-19 group than those in the pre-COVID-19 group (all P < 0.05). Furthermore, compared to the pre-COVID-19 group, the post-COVID-19 group displayed higher rates of SLRTI and mechanical ventilation, with a longer length of hospital stay (all P < 0.05). Age, low birthweight, preterm birth, personal history of atopy, underlying condition, NLR, IL-6 were the shared independent risk factors for RSV-related SLRTI in both pre- and post-COVID-19 groups, whereas seizures and co-infection were independently associated with SLRTI only in the post-COVID-19 group. CONCLUSIONS: An off-season RSV endemic was observed in Yunnan during the post-COVID-19 era, with changed clinical features and increased severity. Age, low birthweight, preterm birth, personal history of atopy, underlying condition, NLR, IL-6, seizures, and co-infection were the risk factors for RSV-related SLRTI in the post-COVID-19 era.


Subject(s)
COVID-19 , Hospitalization , Respiratory Syncytial Virus Infections , Humans , Retrospective Studies , Respiratory Syncytial Virus Infections/epidemiology , COVID-19/epidemiology , Female , Male , Infant , Child, Preschool , China/epidemiology , Hospitalization/statistics & numerical data , Child , Risk Factors , SARS-CoV-2 , Respiratory Syncytial Virus, Human , Seasons , Infant, Newborn , Adolescent
2.
Small ; : e2403679, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240068

ABSTRACT

Diabetic wounds tend to develop into nonhealing wounds associated with the complex inflammatory microenvironment of uncontrollable bacterial infection, reactive oxygen species (ROS) accumulation, and chronic hypoxia. Damaged blood vessels hinder metabolic circulation, aggravating hypoxia, and ROS accumulation and further exacerbating the diabetic wound microenvironment. However, existing treatments with a single functionality have difficulty healing complicated diabetic wounds. Therefore, developing an integrative strategy to improve the hostility of the diabetic wound microenvironment is urgently needed. Herein, multifunctional genipin (GP)-crosslinked chitosan (CS)-based hydrogels decorated with the biomimetic metal-organic framework (MOF)-nanozymes and the natural antibacterial agent chlorogenic acid (CGA), which is named MOF/CGA@GP-CS (MCGC), are prepared. With catalase (CAT)-like activity, these dual-metal MOF-nanozymes are promising bioreactors for simultaneously alleviating ROS accumulation and hypoxia by converting elevated endogenous H2O2 into dissolved oxygen in diabetic wounds. In addition, the other component of natural polyphenolic CGA acts as a mild antibacterial agent, efficiently inhibiting wound infection and avoiding antibiotic resistance. Impressively, the MCGC hydrogels accelerate infected diabetic wound healing by eliminating oxidative stress, increasing oxygenation, and reversing bacterial infection in vivo. In this work, an effective strategy based on multifunctional hydrogel wound dressings is successfully developed and applied in diabetic wound management.

3.
BMC Oral Health ; 24(1): 1108, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294620

ABSTRACT

OBJECTIVE: Clinical studies have demonstrated the effectiveness of arthrocentesis in managing temporomandibular joint disorders (TMDs). However, there is a lack of consensus among these studies regarding the selection of injectables. Furthermore, an increasing number of drugs have been tested for TMDs in recent years, complicating the decision-making process for clinicians. This study conducted a network meta-analysis of randomized controlled trials (RCTs) to compare the clinical efficacy of different arthrocentesis treatment regimens. METHODS: We conducted a comprehensive search of Embase, PubMed, Cochrane Library, and Web of Science to gather articles on RCTs pertaining to the management of TMDs using arthrocentesis. This search spanned from inception of these databases up to July 29, 2024. We then performed a network meta-analysis using Stata 17.0 software. The outcome indicators used were VAS scores and changes in unassisted maximum opening. To determine the efficacy of each regimen, we employed surface-under the cumulative ranking curve (SUCRA) ranking. RESULT: Forty RCTs were included, encompassing 1904 temporomandibular joints (TMJs) cases. Treatment options encompass platelet-rich plasma (PRP), hyaluronic acid (HA), corticosteroids (CS), bone marrow concentrate (BMAC), injectable platelet-rich fibrin (i-PRF), concentrated growth factor (CGF), Tenoxicam (TX), microfragmented adipose tissue (FAT), and their combination regimens. The SUCRA ranking revealed that the most effective treatment options at 1-, 3-, and 6-months post-arthrocentesis were HA + PRP, i-PRF, and BMAC, respectively. CONCLUSION: HA + PRP, i-PRF and BMAC may represent the optimal arthrocentesis agents for the management of TMDs symptoms and restoration of TMJ function in the short, medium, and long term, respectively. SYSTEMATIC REVIEW REGISTRATION: https://www.crd.york.ac.uk/PROSPERO/ , identifier CRD42024563975.


Subject(s)
Arthrocentesis , Network Meta-Analysis , Randomized Controlled Trials as Topic , Temporomandibular Joint Disorders , Humans , Temporomandibular Joint Disorders/therapy , Arthrocentesis/methods , Treatment Outcome
4.
Curr Oncol ; 31(9): 5677-5693, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39330049

ABSTRACT

BACKGROUND: Most breast cancer-related deaths are caused by distant metastases and drug resistance. It is important to find appropriate biomarkers to monitor the disease and to predict patient responses after treatment early and accurately. Many studies have found that clustered circulating tumor cells, with more correlations with metastatic cancer and poor survival of patients than individual ones, are promising biomarkers. METHODS: Eighty samples from eleven patients with breast cancer during follow-up visits were examined. By using a microfluidic chip and imaging system, the number of circulating tumor cells and microemboli (CTC/CTM) were counted to assess the distribution in stratified patients and the potential in predicting the disease condition of patients after treatments during follow-up visits. Specific components and subtypes of CTM were also preliminarily investigated. RESULTS: Compared to CTC, CTM displayed a distinguishable distribution in stratified patients, having a better AUC value, in predicting the disease progression of breast cancer patients during follow-up visits in this study. Four subtypes were categorized from the identified CTM by considering different components. In combination with CEA and CA153, enumerated CTC and CTM from individual patients were applied to monitor the disease condition and patient response to the therapy during follow-up visits. CONCLUSIONS: The CTM and its subtypes are promising biomarkers and valuable tools for studying cancer metastasis and longitudinally monitoring cancer patients during follow-up visits.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Neoplastic Cells, Circulating , Humans , Breast Neoplasms/blood , Breast Neoplasms/pathology , Female , Middle Aged , Biomarkers, Tumor/blood , Follow-Up Studies , Aged , Adult
5.
Biomed Pharmacother ; 178: 117172, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39128188

ABSTRACT

Obesity has shown a global epidemic trend. The high-lipid state caused by obesity can maintain the heart in a prolonged low-grade inflammatory state and cause ventricular remodeling, leading to a series of pathologies, such as hypertrophy, fibrosis, and apoptosis, which eventually develop into obese cardiomyopathy. Therefore, prolonged low-grade inflammation plays a crucial role in the progression of obese cardiomyopathy, making inflammation regulation an essential strategy for treating this disease. Cyy-272, an indazole derivative, is an anti-inflammatory compound independently synthesized by our laboratory. Our previous studies revealed that Cyy-272 can exert anti-inflammatory effects by inhibiting the phosphorylation and activation of C-Jun N-terminal kinase (JNK), thereby alleviating lipopolysaccharide (LPS)-induced acute lung injury (ALI). The current study aimed to evaluate the potential of Cyy-272 to mitigate the occurrence and progression of obese cardiomyopathy through the inhibition of the JNK signaling pathway. Our results indicate that the compound Cyy-272 has encouraging therapeutic effects on obesity-induced cardiac injury. It significantly inhibits inflammation in cardiomyocytes and heart tissues induced by high lipid concentrations, further alleviating the resulting hypertrophy, fibrosis, and apoptosis. Mechanistically, the protective effect of Cyy-272 on obese cardiomyopathy can be attributed to its direct inhibition of JNK protein phosphorylation. In conclusion, we identified a novel compound, Cyy-272, capable of alleviating obese cardiomyopathy and confirmed that its effect is achieved through direct inhibition of JNK.


Subject(s)
Cardiomyopathies , Indazoles , JNK Mitogen-Activated Protein Kinases , Obesity , Animals , Obesity/drug therapy , Obesity/complications , Cardiomyopathies/drug therapy , Indazoles/pharmacology , Indazoles/therapeutic use , Indazoles/chemistry , JNK Mitogen-Activated Protein Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , Male , Apoptosis/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Mice, Inbred C57BL , Mice , Fibrosis , Anti-Inflammatory Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry , Lipopolysaccharides , MAP Kinase Signaling System/drug effects
6.
Chem Sci ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39144461

ABSTRACT

Acetaldehyde (AA) and ethylene oxide (EO) are important fine chemicals, and are also substrates with wide applications for high-value chemical products. Direct electrocatalytic oxidation of ethylene to AA and EO can avoid the untoward effects from harmful byproducts and high energy emissions. The most central intermediate state is the co-adsorption and coupling of ethylene and active oxygen intermediates (*O) at the active site(s), which is restricted by two factors: the stability of the *O intermediate generated during the electrolysis of water on the active site at a certain applied potential and pH range; and the lower kinetic energy barriers of the oxidation process based on the thermo-migration barrier from the *O intermediate to produce AA/EO. The benefit of two adjacent active atoms is more promising, since diverse adsorption and flexible catalytic sites may be provided for elementary reaction steps. Motivated by this strategy, we explored the feasibility of various homonuclear TM2N6@graphenes with dual-atomic-site catalysts (DASCs) for ethylene electro-oxidation through first-principles calculations via thermodynamic evaluation, analysis of the surface Pourbaix diagram, and kinetic evaluation. Two reaction mechanisms through C-TM versus TM-TM synergism were determined. Between them, a TM-TM mechanism on 4 TM2N6@graphenes and a C-TM mechanism on 5 TM2N6@graphenes are built. All 5 TM2N6@graphenes through the C-TM mechanism exhibit lower kinetic energy barriers for AA and EO generation than the 4 TM2N6@graphenes through the TM-TM mechanism. In particular, Pd2N6@graphene exhibits the most excellent catalytic activity, with energy barriers for generating AA and EO of only 0.02 and 0.65 eV at an applied potential of 1.77 V vs. RHE for the generation of an active oxygen intermediate. Electronic structure analysis indicates that the intrinsic C-TM mechanism is more advantageous than the TM-TM mechanism for ethylene electro-oxidation, and this study also provides valuable clues for further experimental exploration.

7.
Langmuir ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141493

ABSTRACT

The adsorbed nanobubbles inside the nanochannels can cause fluid transport blockages, which will obviously degrade the nanodevice performance and reduce the lifetime. However, due to small-scale effects, the removal of nanobubbles is a huge challenge at the nanoscale. Herein, molecular dynamics simulations are carried out to study the effect of the electrostatic field on underwater nitrogen nanobubbles confined in nanochannels. It is found that the nanobubbles will collapse under an appropriate electrostatic field, thereby unblocking the transport of water in the nanochannels. The formation of ordered water structures induced by electrostatic fields plays an important role in the removal of nanobubbles from the nanochannels. Our findings provide a convenient, controllable, and remote way to address the blockage problem of nanobubbles in nanochannels, which may have potential applications in improving the performance of fuel cells.

8.
Zhonghua Nan Ke Xue ; 30(3): 241-248, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-39177391

ABSTRACT

OBJECTIVE: To explore the potential action mechanism of Huotu Jiji Pellets (HJP) in the treatment of erectile dysfunction (ED) based on network pharmacology and molecular docking. METHODS: We identified the main effective compounds and active molecular targets of HJP from the database of Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Integrative Pharmacology-Based Research Platform of Traditional Chinese Medicine (TCMIP) and the therapeutic target genes of ED from the databases of Genecards. Then we obtained the common targets of HJP and ED using the Venny software, constructed a protein-protein interaction (PPI) network of HJP acting on ED, and screened out the core targets with the Cytoscape software. Lastly we performed GO functional enrichment and KEGG pathway enrichment analyses of the core targets followed by molecular docking of HJP and the core targets using Chem3D and AutoDock Tools and QuickVina-W software. RESULTS: A total of 64 effective compounds, 822 drug-related targets, 1 783 disease-related targets and 320 common targets were obtained in this study. PPI network analysis showed that the core targets of HJP for ED included ESR1, HSP90AA1, SRC, and STAT3. GO functional enrichment analysis indicated the involvement of the core targets in such biological processes as response to xenobiotic stimulus, positive regulation of kinase activity, and positive regulation of MAPK cascade. KEGG pathway enrichment analysis suggested that PI3K-Akt, apoptosis, MAPK, HIF-1, VEGF, autophagy and other signaling pathways may be related to the mechanism of HJP acting on ED. Molecular docking prediction exhibited a good docking activity of the key active molecules of HJP with the core targets. CONCLUSION: This study showed that HJP acted on ED through multi-components, multi-targets and multi-pathways, which has provided some evidence and reference for the clinical treatment and subsequent studies of the disease.


Subject(s)
Drugs, Chinese Herbal , Erectile Dysfunction , Medicine, Chinese Traditional , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Male , Erectile Dysfunction/drug therapy , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Humans , Signal Transduction
10.
Front Endocrinol (Lausanne) ; 15: 1406793, 2024.
Article in English | MEDLINE | ID: mdl-38957443

ABSTRACT

Background: Limited research has been conducted to quantitatively assess the impact of systemic inflammation in metabolic dysfunction-associated fatty liver disease (MAFLD) and sub-clinical carotid atherosclerosis (SCAS). The systemic immune-inflammation index (SII), which integrates inflammatory cells, has emerged as a reliable measure of local immune response and systemic inflammation Therefore, this study aims to assess the mediating role of SII in the association between MAFLD and SCAS in type 2 diabetes mellitus (T2DM). Method: This study prospectively recruited 830 participants with T2DM from two centers. Unenhanced abdominal CT scans were conducted to evaluate MAFLD, while B-mode carotid ultrasonography was performed to assess SCAS. Weighted binomial logistic regression analysis and restricted cubic splines (RCS) analyses were employed to analyze the association between the SII and the risk of MAFLD and SCAS. Mediation analysis was further carried out to explore the potential mediating effect of the SII on the association between MAFLD and SCAS. Results: The prevalence of both MAFLD and SCAS significantly increased as the SII quartiles increased (P<0.05). MAFLD emerged as an independent factor for SCAS risk across three adjusted models, exhibiting odds ratios of 2.15 (95%CI: 1.31-3.53, P < 0.001). Additionally, increased SII quartiles and Ln (SII) displayed positive associations with the risk of MAFLD and SCAS (P < 0.05). Furthermore, a significant dose-response relationship was observed (P for trend <0.001). The RCS analyses revealed a linear correlation of Ln (SII) with SCAS and MAFLD risk (P for nonlinearity<0.05). Importantly, SII and ln (SII) acted as the mediators in the association between MAFLD and SCAS following adjustments for shared risk factors, demonstrating a proportion-mediated effect of 7.8% and 10.9%. Conclusion: SII was independently correlated with MAFLD and SCAS risk, while also acting as a mediator in the relationship between MAFLD and SCAS.


Subject(s)
Carotid Artery Diseases , Diabetes Mellitus, Type 2 , Inflammation , Mediation Analysis , Humans , Male , Female , Carotid Artery Diseases/diagnostic imaging , Carotid Artery Diseases/epidemiology , Carotid Artery Diseases/immunology , Carotid Artery Diseases/metabolism , Middle Aged , Inflammation/metabolism , Inflammation/immunology , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Prospective Studies , Aged , Risk Factors , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/immunology
11.
Article in English | MEDLINE | ID: mdl-38926763

ABSTRACT

BACKGROUND: Sarcopenia, a group of muscle-related disorders, leads to the gradual decline and weakening of skeletal muscle over time. Recognizing the pivotal role of gastrointestinal conditions in maintaining metabolic homeostasis within skeletal muscle, we hypothesize that the effectiveness of the myogenic programme is influenced by the levels of gastrointestinal hormones in the bloodstream, and this connection is associated with the onset of sarcopenia. METHODS: We first categorized 145 individuals from the Emergency Room of Taipei Veterans General Hospital into sarcopenia and non-sarcopenia groups, following the criteria established by the Asian Working Group for Sarcopenia. A thorough examination of specific gastrointestinal hormone levels in plasma was conducted to identify the one most closely associated with sarcopenia. Techniques, including immunofluorescence, western blotting, glucose uptake assays, seahorse real-time cell metabolic analysis, flow cytometry analysis, kinesin-1 activity assays and qPCR analysis, were applied to investigate its impacts and mechanisms on myogenic differentiation. RESULTS: Individuals in the sarcopenia group exhibited elevated plasma levels of glucagon-like peptide 1 (GLP-1) at 1021.5 ± 313.5 pg/mL, in contrast to non-sarcopenic individuals with levels at 351.1 ± 39.0 pg/mL (P < 0.05). Although it is typical for GLP-1 levels to rise post-meal and subsequently drop naturally, detecting higher GLP-1 levels in starving individuals with sarcopenia raised the possibility of GLP-1 influencing myogenic differentiation in skeletal muscle. Further investigation using a cell model revealed that GLP-1 (1, 10 and 100 ng/mL) dose-dependently suppressed the expression of the myogenic marker, impeding myocyte fusion and the formation of polarized myotubes during differentiation. GLP-1 significantly inhibited the activity of the microtubule motor kinesin-1, interfering with the translocation of glucose transporter 4 (GLUT4) to the cell membrane and the dispersion of mitochondria. These impairments subsequently led to a reduction in glucose uptake to 0.81 ± 0.04 fold (P < 0.01) and mitochondrial adenosine triphosphate (ATP) production from 25.24 ± 1.57 pmol/min to 18.83 ± 1.11 pmol/min (P < 0.05). Continuous exposure to GLP-1, even under insulin induction, attenuated the elevated glucose uptake. CONCLUSIONS: The elevated GLP-1 levels observed in individuals with sarcopenia are associated with a reduction in myogenic differentiation. The impact of GLP-1 on both the membrane translocation of GLUT4 and the dispersion of mitochondria significantly hinders glucose uptake and the production of mitochondrial ATP necessary for the myogenic programme. These findings point us towards strategies to establish the muscle-gut axis, particularly in the context of sarcopenia. Additionally, these results present the potential of identifying relevant diagnostic biomarkers.

12.
Nat Commun ; 15(1): 5314, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38906879

ABSTRACT

The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications.

13.
Chem Biodivers ; 21(8): e202401093, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38867371

ABSTRACT

Two previously undescribed coumarins (1-2) were isolated from the root of Notopterygium incisum. The structures of new findings were elucidated by analyses of spectral evidences in HRESIMS, NMR, as well as ICD. The absolute configurations were further confirmed by chemical calculations. 1-2 exhibits obviously anti-inflammatory activity by inhibiting the expression of inflammatory mediators (COX-2, iNOS), as well as reducing the release of NO and the accumulation of ROS in cells. Western blotting analysis revealed that 2 could inhibit the PI3K/AKT pathway by reducing the expression of p-PI3K and p-AKT.


Subject(s)
Apiaceae , Coumarins , Nitric Oxide Synthase Type II , Nitric Oxide , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Apiaceae/chemistry , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/isolation & purification , Cyclooxygenase 2/metabolism , Dose-Response Relationship, Drug , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Molecular Structure , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/antagonists & inhibitors , Phosphatidylinositol 3-Kinases/metabolism , Plant Roots/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/antagonists & inhibitors , Structure-Activity Relationship , Nitriles/chemistry
14.
Int J Biol Macromol ; 269(Pt 1): 131808, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697439

ABSTRACT

Injectable hydrogels, providing sustained release as implanted materials, have received tremendous attention. In this study, chitosan-based hydrogels were prepared via Schiff base reaction of the aldehyde groups on Poly(NIPAM-co-FBEMA) and the amine groups on chitosan. Owing to the dynamic covalent linkage, the SC/PNF hydrogels exhibit pH-responsive, reversible sol-gel transition, injectable, and self-healing capacity. The mechanical strength of SC/PNF hydrogels can be operated simply by switching the composition or solid content of Poly(NIPAM-co-FBEMA) copolymers. Rheological analyses, including frequency sweeps, strain sweep scanning, and dynamic time sweeps, were employed to demonstrate the relationship between storage modulus (G'), loss modulus (G″), and composition of the SC/PNF hydrogels. In vitro release behaviors reveal that vancomycin-loaded SC/PNF hydrogel could contribute to both the initial burst release (over 1000 ppm within 4 h) and the sustained release (3000 ppm for at least 30 days). Pristine SC/PNF hydrogel holds good biocompatibility toward L929 cells and S. aureus that it degrades as incubated with S. aureus. However, vancomycin-wrapped SC/PNF hydrogel possesses a rapid bacterial-killing effect with a clear inhibition zone. In short, the SC/PNF hydrogels deliver not only sustainable release ability but also tunable physical properties, which are expected to be an outstanding candidate for non-invasive, anti-infection applications.


Subject(s)
Anti-Bacterial Agents , Chitosan , Delayed-Action Preparations , Hydrogels , Schiff Bases , Staphylococcus aureus , Chitosan/chemistry , Schiff Bases/chemistry , Hydrogels/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Delayed-Action Preparations/pharmacology , Mice , Animals , Drug Liberation , Injections , Cell Line , Rheology , Vancomycin/chemistry , Vancomycin/pharmacology , Vancomycin/administration & dosage , Hydrogen-Ion Concentration , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Drug Carriers/chemistry
15.
BMC Geriatr ; 24(1): 442, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773457

ABSTRACT

BACKGROUND: The purpose of this study was to evaluate the safety and efficacy of preoperative concurrent chemoradiotherapy (preCRT) for locally advanced rectal cancer in older people who were classified as "fit" by comprehensive geriatric assessment (CGA). METHODS: A single-arm, multicenter, phase II trial was designed. Patients were eligible for this study if they were aged 70 years or above and met the standards of "fit" (SIOG1) as evaluated by CGA and of the locally advanced risk category. The primary endpoint was 2-year disease-free survival (DFS). Patients were scheduled to receive preCRT (50 Gy) with raltitrexed (3 mg/m2 on days 1 and 22). RESULTS: One hundred and nine patients were evaluated by CGA, of whom eighty-six, eleven and twelve were classified into the fit, intermediate and frail category. Sixty-eight fit patients with a median age of 74 years were enrolled. Sixty-four patients (94.1%) finished radiotherapy without dose reduction. Fifty-four (79.3%) patients finished the prescribed raltitrexed therapy as planned. Serious toxicity (grade 3 or above) was observed in twenty-four patients (35.3%), and fourteen patients (20.6%) experienced non-hematological side effects. Within a median follow-up time of 36.0 months (range: 5.9-63.1 months), the 2-year overall survival (OS), cancer-specific survival (CSS) and disease-free survival (DFS) rates were 89.6% (95% CI: 82.3-96.9), 92.4% (95% CI: 85.9-98.9) and 75.6% (95% CI: 65.2-86.0), respectively. Forty-eight patients (70.6%) underwent surgery (R0 resection 95.8%, R1 resection 4.2%), the corresponding R0 resection rate among the patients with positive mesorectal fascia status was 76.6% (36/47). CONCLUSION: This phase II trial suggests that preCRT is efficient with tolerable toxicities in older rectal cancer patients who were evaluated as fit based on CGA. TRIAL REGISTRATION: The registration number on ClinicalTrials.gov was NCT02992886 (14/12/2016).


Subject(s)
Chemoradiotherapy , Geriatric Assessment , Rectal Neoplasms , Humans , Aged , Male , Female , Rectal Neoplasms/therapy , Aged, 80 and over , Geriatric Assessment/methods , Chemoradiotherapy/methods , Disease-Free Survival , Preoperative Care/methods , Thiophenes/administration & dosage , Thiophenes/therapeutic use , Patient Care Team , Quinazolines/administration & dosage , Quinazolines/therapeutic use
16.
ACS Macro Lett ; 13(6): 711-718, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38767947

ABSTRACT

Based on the characteristics of commodity polymers in large quantities and low costs, modification of existing commodity polymers emerges as the most effective approach for exploring novel materials. Nevertheless, conventional modification methods typically involve high-energy processes (e.g., high temperature, high-energy radiation), which may lead to irreversible detrimental effects on the polymers, contradicting the desired performance enhancement through modification. In this work, we propose a carbene-mediated postpolymerization modification (PPM) strategy utilizing diazo compounds. Under photochemical or thermal activation conditions, insertion of the C-H bond can be achieved without compromising the performance of polymers. These diazo compounds can be easily synthesized in just two steps and applied to all C-H-containing polymers. This practical and effective modification strategy offers new opportunities and possibilities for enhancing the value and expanding the applications of polymers.

17.
Chemistry ; 30(39): e202400756, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38727558

ABSTRACT

Multimetallic synergistic effects have the potential to improve CO2 cycloesterification and Knoevenagel reaction processes, outperforming monometallic MOFs. The results demonstrate superior performance in these processes. To investigate this, we created and characterized a selection of single-component Ln(III)-MOFs (Ln=Eu, Tb, Gd, Dy, Ho) and high-entropy lanthanide-organic framework (HE-LnMOF) using solvent-thermal conditions. The experiments revealed that HE-LnMOF exhibited heightened catalytic efficiency in CO2 cycloesterification and Knoevenagel reactions compared to single-component Ln(III) MOFs. Moreover, the HE-LnMOF displayed significant stability, maintaining their structural integrity after five cycles while sustaining elevated conversion and selectivity rates. The feasible mechanisms of catalytic reactions were also discussed. HE-LnMOF possess multiple unsaturated metal centers, acting as Lewis acid sites, with oxygen atoms connecting the metal, and hydroxyl groups on the ligand serving as base sites. This study introduces a novel method for synthesizing HE-LnMOF and presents a fresh application of HE-LnMOF for converting CO2.

18.
Chem Sci ; 15(19): 7285-7292, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756801

ABSTRACT

Energy-efficient separation of C2H6/C2H4 is a great challenge, for which adsorptive separation is very promising. C2H6-selective adsorption has big implications, while the design of C2H6-sorbents with ideal adsorption capability, particularly with the C2H6/C2H4-selectivity exceeded 2.0, is still challenging. Instead of the current strategies such as chemical modification or pore space modulation, we propose a new methodology for the design of C2H6-sorbents. With a Cu-TCPP [TCPP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin] framework dispersed onto a microporous carbon and a hierarchical-pore carbon, two composite sorbents are fabricated. The composite sorbents exhibit enhanced C2H6-selective adsorption capabilities with visible light, particularly the composite sorbent based on the hierarchical-pore carbon, whose C2H6 and C2H4 adsorption capacities (0 °C, 1 bar) are targetedly increased by 27% and only 1.8% with visible light, and therefore, an C2H6-selectivity (C2H6/C2H4 = 10/90, v/v) of 4.8 can be realized. With visible light, the adsorption force of the C2H6 molecule can be asymmetrically enhanced by the excitation enriched electron density over the adsorption sites formed via the close interaction between the Cu-TCPP and the carbon layer, whereas that of the C2H4 molecule is symmetrically altered and the forces cancelled each other out. This strategy may open up a new route for energy-efficient adsorptive separation of C2H6/C2H4 with light.

19.
Phys Rev Lett ; 132(18): 184003, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38759176

ABSTRACT

Controlling active transport of water through membrane channels is essential for advanced nanofluidic devices. Despite advancements in water nanopump design using techniques like short-range invasion and subnanometer-level control, challenges remain facilely and remotely realizing massive waters active transport. Herein, using molecular dynamic simulations, we propose an ultrahigh-flux nanopump, powered by frequency-specific terahertz stimulation, capable of unidirectionally transporting massive water through asymmetric-wettability membrane channels at room temperature without any external pressure. The key physics behind this terahertz-powered water nanopump is revealed to be the energy flow resulting from the asymmetric optical absorption of water.

20.
Cancer Med ; 13(9): e7228, 2024 May.
Article in English | MEDLINE | ID: mdl-38733174

ABSTRACT

BACKGROUND: The molecular and immunological characteristics of primary tumors and positive lymph nodes in esophageal squamous cell carcinoma (ESCC) are unknown and the relationship with recurrence is unclear, which this study attempted to explore. METHODS: A total of 30 ESCC patients with lymph node positive (IIB-IVA) were enrolled. Among them, primary tumor and lymph node specimens were collected from each patient, and subjected to 551-tumor-targeted DNA sequencing and 289-immuno-oncology RNA panel sequencing to identify the different molecular basis and immunological features, respectively. RESULTS: The primary tumors exhibited a higher mutation burden than lymph nodes (p < 0.001). One-year recurrent ESCC exhibited a higher Mucin16 (MUC16) mutation rate (p = 0.038), as well as univariate and multivariate analysis revealed that MUC16 mutation is independent genetic factor associated with reduced relapse-free survival (univariate, HR: 5.39, 95% CI: 1.67-17.4, p = 0.005; multivariate, HR: 7.36, 95% CI: 1.79-30.23, p = 0.006). Transcriptomic results showed non-relapse group had higher cytolytic activity (CYT) score (p = 0.025), and was enriched in the IFN-α pathway (p = 0.036), while those in the relapsed group were enriched in the TNF-α/NF-κB (p = 0.001) and PI3K/Akt pathway (p = 0.014). CONCLUSION: The difference in molecular characteristics between primary lesions and lymph nodes may be the cause of the inconsistent clinical outcomes. Mutations of MUC16 and poor immune infiltration are associated with rapid relapse of nodes-positive ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Lymph Nodes , Lymphatic Metastasis , Mutation , Neoplasm Recurrence, Local , Humans , Male , Female , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/surgery , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/pathology , Middle Aged , Neoplasm Recurrence, Local/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/immunology , Esophageal Neoplasms/pathology , Esophageal Neoplasms/surgery , Esophageal Neoplasms/mortality , Lymph Nodes/pathology , Lymph Nodes/immunology , Aged , Biomarkers, Tumor/genetics , Prognosis , Membrane Proteins , CA-125 Antigen
SELECTION OF CITATIONS
SEARCH DETAIL