Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Nat Immunol ; 24(8): 1318-1330, 2023 08.
Article in English | MEDLINE | ID: mdl-37308665

ABSTRACT

Immune checkpoint blockade (ICB) targeting PD-1 and CTLA-4 has revolutionized cancer treatment. However, many cancers do not respond to ICB, prompting the search for additional strategies to achieve durable responses. G-protein-coupled receptors (GPCRs) are the most intensively studied drug targets but are underexplored in immuno-oncology. Here, we cross-integrated large singe-cell RNA-sequencing datasets from CD8+ T cells covering 19 distinct cancer types and identified an enrichment of Gαs-coupled GPCRs on exhausted CD8+ T cells. These include EP2, EP4, A2AR, ß1AR and ß2AR, all of which promote T cell dysfunction. We also developed transgenic mice expressing a chemogenetic CD8-restricted Gαs-DREADD to activate CD8-restricted Gαs signaling and show that a Gαs-PKA signaling axis promotes CD8+ T cell dysfunction and immunotherapy failure. These data indicate that Gαs-GPCRs are druggable immune checkpoints that might be targeted to enhance the response to ICB immunotherapies.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Mice , Animals , Signal Transduction , Mice, Transgenic , Immunotherapy , Tumor Microenvironment
2.
Nat Commun ; 13(1): 4298, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35879302

ABSTRACT

Despite the promise of immune checkpoint inhibition (ICI), therapeutic responses remain limited. This raises the possibility that standard of care treatments delivered in concert may compromise the tumor response. To address this, we employ tobacco-signature head and neck squamous cell carcinoma murine models in which we map tumor-draining lymphatics and develop models for regional lymphablation with surgery or radiation. We find that lymphablation eliminates the tumor ICI response, worsening overall survival and repolarizing the tumor- and peripheral-immune compartments. Mechanistically, within tumor-draining lymphatics, we observe an upregulation of conventional type I dendritic cells and type I interferon signaling and show that both are necessary for the ICI response and lost with lymphablation. Ultimately, we provide a mechanistic understanding of how standard oncologic therapies targeting regional lymphatics impact the tumor response to immune-oncology therapy in order to define rational, lymphatic-preserving treatment sequences that mobilize systemic antitumor immunity, achieve optimal tumor responses, control regional metastatic disease, and confer durable antitumor immunity.


Subject(s)
Head and Neck Neoplasms , Immune Checkpoint Inhibitors , Animals , Dendritic Cells , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Humans , Immunotherapy , Mice , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/therapy
3.
Nat Commun ; 12(1): 2383, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33888713

ABSTRACT

Immune checkpoint blockade (ICB) therapy has revolutionized head and neck squamous cell carcinoma (HNSCC) treatment, but <20% of patients achieve durable responses. Persistent activation of the PI3K/AKT/mTOR signaling circuitry represents a key oncogenic driver in HNSCC; however, the potential immunosuppressive effects of PI3K/AKT/mTOR inhibitors may limit the benefit of their combination with ICB. Here we employ an unbiased kinome-wide siRNA screen to reveal that HER3, is essential for the proliferation of most HNSCC cells that do not harbor PIK3CA mutations. Indeed, we find that persistent tyrosine phosphorylation of HER3 and PI3K recruitment underlies aberrant PI3K/AKT/mTOR signaling in PIK3CA wild type HNSCCs. Remarkably, antibody-mediated HER3 blockade exerts a potent anti-tumor effect by suppressing HER3-PI3K-AKT-mTOR oncogenic signaling and concomitantly reversing the immune suppressive tumor microenvironment. Ultimately, we show that HER3 inhibition and PD-1 blockade may provide a multimodal precision immunotherapeutic approach for PIK3CA wild type HNSCC, aimed at achieving durable cancer remission.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Head and Neck Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Receptor, ErbB-3/antagonists & inhibitors , Squamous Cell Carcinoma of Head and Neck/drug therapy , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Female , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/pathology , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Mice , Mutation , Precision Medicine/methods , Programmed Cell Death 1 Receptor/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor, ErbB-3/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/pathology , TOR Serine-Threonine Kinases/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
4.
Hum Vaccin Immunother ; 16(9): 2114-2122, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32783701

ABSTRACT

Lyme disease is the most common vector-borne disease in North America. The etiological agent is the spirochete Borreliella burgdorferi, transmitted to mammalian hosts by the Ixodes tick. In recent years there has been an increase in the number of cases of Lyme disease. Currently, there is no vaccine on the market for human use. We describe the development of a novel synthetically engineered DNA vaccine, pLD1 targeting the outer-surface protein A (OspA) of Borreliella burgdorferi. Immunization of C3 H/HeN mice with pLD1 elicits robust humoral and cellular immune responses that confer complete protection against a live Borreliella burgdorferi bacterial challenge. We also assessed intradermal (ID) delivery of pLD1 in Hartley guinea pigs, demonstrating the induction of robust and durable humoral immunity that lasts at least 1 year. We provide evidence of the potency of pLD1 by showing that antibodies targeting the OspA epitopes which have been associated with protection are prominently raised in the immunized guinea pigs. The described study provides the basis for the advancement of pDL1 as a potential vaccine for Lyme disease control.


Subject(s)
Borrelia burgdorferi Group , Borrelia burgdorferi , Lyme Disease , Vaccines, DNA , Animals , Antibodies, Bacterial , Antigens, Surface , Bacterial Outer Membrane Proteins , Bacterial Vaccines , Borrelia burgdorferi/genetics , Guinea Pigs , Lyme Disease/prevention & control , Mice , North America
5.
Hum Vaccin Immunother ; 16(9): 2165-2175, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32544376

ABSTRACT

Respiratory Syncytial virus (RSV) is a major threat to many vulnerable populations. There are currently no approved vaccines, and RSV remains a high unmet global medical need. Here we describe the employment of a novel synthetic DNA-encoded antibody technology platform to develop and deliver an engineered human DNA-encoded monoclonal antibody (dMAbTM) targeting the fusion protein (F) of RSV as a new approach to prevention or therapy of at risk populations. In in vivo models, a single administration of synthetic DNA-encoding the single-chain fragment variable-constant fragment (scFv-Fc) RSV-F dMAb resulted in robust and durable circulating levels of a functional antibody systemically and in mucosal tissue. In cotton rats, which are the gold-standard animals to model RSV infection, we observed sustained scFv-Fc RSV-F dMAb in the sera and lung-lavage samples, demonstrating the potential for both long-lasting immunity to RSV and effective biodistribution. The scFv-Fc RSV-F dMAb harbored in the sera exhibited RSV antigen-specific binding and potent viral neutralizing activity. Importantly, in vivo delivery of synthetic DNA-encoding, the scFv-Fc RSV-F dMAb protected animals against viral challenge. Our findings support the significance of dMAbs as a potential platform technology for durable protection against RSV disease.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/genetics , Sigmodontinae , Tissue Distribution , Viral Fusion Proteins/genetics
6.
Nat Commun ; 10(1): 5546, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31804466

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Tobacco use is the main risk factor for HNSCC, and tobacco-associated HNSCCs have poor prognosis and response to available treatments. Recently approved anti-PD-1 immune checkpoint inhibitors showed limited activity (≤20%) in HNSCC, highlighting the need to identify new therapeutic options. For this, mouse models that accurately mimic the complexity of the HNSCC mutational landscape and tumor immune environment are urgently needed. Here, we report a mouse HNSCC model system that recapitulates the human tobacco-related HNSCC mutanome, in which tumors grow when implanted in the tongue of immunocompetent mice. These HNSCC lesions have similar immune infiltration and response rates to anti-PD-1 (≤20%) immunotherapy as human HNSCCs. Remarkably, we find that >70% of HNSCC lesions respond to intratumoral anti-CTLA-4. This syngeneic HNSCC mouse model provides a platform to accelerate the development of immunotherapeutic options for HNSCC.


Subject(s)
Carcinoma, Squamous Cell/therapy , Head and Neck Neoplasms/therapy , Immunotherapy/methods , Ipilimumab/therapeutic use , Mouth Neoplasms/therapy , Animals , Antineoplastic Agents, Immunological/therapeutic use , Carcinoma, Squamous Cell/chemically induced , Cell Line, Tumor , Disease Models, Animal , Head and Neck Neoplasms/chemically induced , Humans , Mice , Mouth Neoplasms/chemically induced , Nicotiana/adverse effects
7.
Hum Gene Ther ; 30(4): 523-533, 2019 04.
Article in English | MEDLINE | ID: mdl-30860399

ABSTRACT

Plasmid DNA (pDNA) gene delivery is a highly versatile technology that has the potential to address a multitude of unmet medical needs. Advances in pDNA delivery to host tissue with the employment of in vivo electroporation (EP) have led to significantly enhanced gene expression and the recent demonstration of clinical efficacy with the platform. Building upon this platform, this study reports that enzyme-mediated modification of the muscle tissue extracellular matrix structure at the site of pDNA delivery operates in a synergistic manner with EP to enhance both local and systemic gene expression further. Specifically, administration of chondroitinase ABC (Cho ABC) to the site of intramuscular delivery of pDNA led to transient disruption of chondroitin sulfate scaffolding barrier, permitting enhanced gene distribution and expression across the tissue. The employment of Cho ABC in combination with CELLECTRA® intramuscular EP resulted in increased gene expression by 5.5-fold in mice and 17.98-fold in rabbits. The study demonstrates how this protocol can be universally applied to an active prophylaxis platform to increase the in vivo production of functional immunoglobulin G, and to DNA vaccine protocols to permit drug dose sparing. The data indicate the Cho ABC formulation to be of significant value upon combination with EP to drive enhanced gene expression levels in pDNA delivery protocols.


Subject(s)
Immunization , Plasmids/genetics , Plasmids/immunology , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Animals , Electroporation , Gene Expression , Gene Transfer Techniques , Humans , Immunogenicity, Vaccine , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice , Muscle, Skeletal/metabolism , Plasmids/administration & dosage , Rabbits , Spleen/cytology , Spleen/immunology , Spleen/metabolism , Transgenes , Vaccines, DNA/administration & dosage
8.
J Vis Exp ; (143)2019 01 20.
Article in English | MEDLINE | ID: mdl-30735179

ABSTRACT

The guinea pig has played a pivotal role as a relevant small animal model in the development of vaccines for infectious diseases such as tuberculosis, influenza, diphtheria, and viral hemorrhagic fevers. We have demonstrated that plasmid-DNA (pDNA) vaccine delivery into the skin elicits robust humoral responses in the guinea pig. However, the use of this animal to model immune responses was somewhat limited in the past due to the lack of available reagents and protocols to study T cell responses. T cells play a pivotal role in both immunoprophylactic and immunotherapeutic mechanisms. Understanding T cell responses is crucial for the development of infectious disease and oncology vaccines and accommodating delivery devices. Here we describe an interferon-gamma (IFN-γ) enzyme-linked immunospot (ELISpot) assay for guinea pig peripheral blood mononuclear cells (PBMCs). The assay enables researchers to characterize vaccine-specific T-cell responses in this important rodent model. The ability to assay cells isolated from the peripheral blood provides the opportunity to track immunogenicity in individual animals.


Subject(s)
Enzyme-Linked Immunospot Assay/methods , Immunogenicity, Vaccine , Influenza Vaccines/immunology , Interferon-gamma/immunology , T-Lymphocytes/immunology , Animals , Guinea Pigs , Leukocytes, Mononuclear/immunology , Vaccination , Vaccines, DNA/immunology
9.
Vaccine ; 37(7): 903-909, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30661837

ABSTRACT

The New Zealand White rabbit is a highly accessible animal model which is regularly employed in biomedical research. However, the paucity of rabbit-specific reagents available limits its use in certain fields. Specifically, the lack of a reliable T cell assay has limited its employment in immune prophylactic and therapeutic studies. To address this inadequacy, we have developed an ELISpot assay to detect cellular immune responses (IFN-γ production) after antigenic stimulation. We have applied this assay to model the T cell responses elicited by a DNA vaccine. Immunization with an influenza nucleoprotein (NP) DNA vaccine revealed strong antigen-specific T cell responses in the peripheral blood mononuclear cell population. We believe this is the first report of such an assay in rabbit species, and it will become a useful tool to monitor in vivo responses to vaccines and permit the wider adoption of this model to measure immunological responses.


Subject(s)
Antiviral Agents/metabolism , Enzyme-Linked Immunospot Assay/methods , Influenza Vaccines/immunology , Interferon-gamma/metabolism , RNA-Binding Proteins/immunology , T-Lymphocytes/immunology , Vaccines, DNA/immunology , Viral Core Proteins/immunology , Animals , Female , Influenza Vaccines/administration & dosage , Leukocytes, Mononuclear/immunology , Nucleocapsid Proteins , Rabbits , Vaccines, DNA/administration & dosage
10.
Vaccine ; 35(1): 61-70, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27894716

ABSTRACT

The skin is an ideal target tissue for vaccine delivery for a number of reasons. It is highly accessible, and most importantly, enriched in professional antigen presenting cells. Possessing strong similarities to human skin physiology and displaying a defined epidermis, the guinea pig is an appropriate model to study epidermal delivery of vaccine. However, whilst we have characterized the humoral responses in the guinea pig associated with skin vaccine protocols we have yet to investigate the T cell responses. In response to this inadequacy, we developed an IFN-γ ELISpot assay to characterize the cellular immune response in the peripheral blood of guinea pigs. Using a nucleoprotein (NP) influenza pDNA vaccination regimen, we characterized host T cell responses. After delivery of the DNA vaccine to the guinea pig epidermis we detected robust and rapid T cell responses. The levels of IFN-γ spot-forming units averaged approximately 5000 per million cells after two immunizations. These responses were broad in that multiple regions across the NP antigen elicited a T cell response. Interestingly, we identified a number of NP immunodominant T cell epitopes to be conserved across an outbred guinea pig population, a phenomenon which was also observed after immunization with a RSV DNA vaccine. We believe this data enhances our understanding of the cellular immune response elicited to a vaccine in guinea pigs, and globally, will advance the use of this model for vaccine development, especially those targeting skin as a delivery site.


Subject(s)
Electroporation , Influenza Vaccines/immunology , RNA-Binding Proteins/immunology , Skin/immunology , T-Lymphocytes/immunology , Vaccines, DNA/immunology , Viral Core Proteins/immunology , Animals , Enzyme-Linked Immunospot Assay , Female , Guinea Pigs , Influenza Vaccines/administration & dosage , Interferon-gamma/metabolism , Nucleocapsid Proteins , Vaccines, DNA/administration & dosage
11.
J Mol Cell Cardiol ; 103: 1-10, 2017 02.
Article in English | MEDLINE | ID: mdl-28017639

ABSTRACT

Sphingosine-1-phosphate (S1P), a bioactive lysophospholipid, is generated and released at sites of tissue injury in the heart and can act on S1P1, S1P2, and S1P3 receptor subtypes to affect cardiovascular responses. We established that S1P causes little phosphoinositide hydrolysis and does not induce hypertrophy indicating that it does not cause receptor coupling to Gq. We previously demonstrated that S1P confers cardioprotection against ischemia/reperfusion by activating RhoA and its downstream effector PKD. The S1P receptor subtypes and G proteins that regulate RhoA activation and downstream responses in the heart have not been determined. Using siRNA or pertussis toxin to inhibit different G proteins in NRVMs we established that S1P regulates RhoA activation through Gα13 but not Gα12, Gαq, or Gαi. Knockdown of the three major S1P receptors using siRNA demonstrated a requirement for S1P3 in RhoA activation and subsequent phosphorylation of PKD, and this was confirmed in studies using isolated hearts from S1P3 knockout (KO) mice. S1P treatment reduced infarct size induced by ischemia/reperfusion in Langendorff perfused wild-type (WT) hearts and this protection was abolished in the S1P3 KO mouse heart. CYM-51736, an S1P3-specific agonist, also decreased infarct size after ischemia/reperfusion to a degree similar to that achieved by S1P. The finding that S1P3 receptor- and Gα13-mediated RhoA activation is responsible for protection against ischemia/reperfusion suggests that selective targeting of S1P3 receptors could provide therapeutic benefits in ischemic heart disease.


Subject(s)
Myocytes, Cardiac/metabolism , Proprotein Convertases/metabolism , Receptors, Lysosphingolipid/metabolism , Serine Endopeptidases/metabolism , rhoA GTP-Binding Protein/metabolism , Animals , Cardiomegaly/etiology , Cardiomegaly/metabolism , Cardiomegaly/pathology , Lysophospholipids/metabolism , Male , Mice , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Protein Binding , Rats , Signal Transduction , Sphingosine/analogs & derivatives , Sphingosine/metabolism , TRPP Cation Channels/metabolism
12.
Mol Ther Nucleic Acids ; 4: e221, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25602583

ABSTRACT

Using pre-miR-451 as a model molecule, we have characterized the general molecular properties of small hairpin RNAs that are processed into potent small interfering RNAs (siRNA) by Argonaute2 (Ago2). The Ago2-sliced siRNAs (sli-siRNAs) have the same silencing potency as the classical Dicer diced siRNAs (di-siRNAs) but have dramatically reduced unwanted sense strand activities. We have built vectors with the constitutive or inducible U6 promoter that can express sli-siRNAs in mammalian cells, in which the sli-siRNAs can be correctly processed to repress target genes. As a proof of principle for potential applications of sli-siRNAs in vivo, we show that the expression of one Ago2 shRNA-1148 in HCT-116 colon cancer cells knocked down RRM2 expression and reduced the proliferation and invasiveness of the cells. The defined sli-siRNA model molecules and the expression systems established in this study will facilitate the design and application of sli-siRNAs as novel potent RNAi triggers with reduced off-target effects.

13.
J Mol Cell Cardiol ; 75: 152-61, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25106095

ABSTRACT

Activation of RhoA, a low molecular-weight G-protein, plays an important role in protecting the heart against ischemic stress. Studies using non-cardiac cells demonstrate that the expression and subsequent secretion of the matricellular protein CCN1 is induced by GPCR agonists that activate RhoA. In this study we determined whether and how CCN1 is induced by GPCR agonists in cardiomyocytes and examined the role of CCN1 in ischemic cardioprotection in cardiomyocytes and the isolated perfused heart. In neonatal rat ventricular myocytes (NRVMs), sphingosine 1-phosphate (S1P), lysophosphatidic acid (LPA) and endothelin-1 induced robust increases in CCN1 expression while phenylephrine, isoproterenol and carbachol had little or no effect. The ability of agonists to activate the small G-protein RhoA correlated with their ability to induce CCN1. CCN1 induction by S1P was blocked when RhoA function was inhibited with C3 exoenzyme or a pharmacological RhoA inhibitor. Conversely overexpression of RhoA was sufficient to induce CCN1 expression. To delineate the signals downstream of RhoA we tested the role of MRTF-A (MKL1), a co-activator of SRF, in S1P-mediated CCN1 expression. S1P increased the nuclear accumulation of MRTF-A and this was inhibited by the functional inactivation of RhoA. In addition, pharmacological inhibitors of MRTF-A or knockdown of MRTF-A significantly diminished S1P-mediated CCN1 expression, indicating a requirement for RhoA/MRTF-A signaling. We also present data indicating that CCN1 is secreted following agonist treatment and RhoA activation, and binds to cells where it can serve an autocrine function. To determine the functional significance of CCN1 expression and signaling, simulated ischemia/reperfusion (sI/R)-induced apoptosis was assessed in NRVMs. The ability of S1P to protect against sI/R was significantly reduced by the inhibition of RhoA, ROCK or MRTF-A or by CCN1 knockdown. We also demonstrate that ischemia/reperfusion induces CCN1 expression in the isolated perfused heart and that this functions as a cardioprotective mechanism, evidenced by the significant increase in infarct development in response to I/R in the cardiac specific CCN1 KO relative to control mice. Our findings implicate CCN1 as a mediator of cardioprotection induced by GPCR agonists that activate RhoA/MRTF-A signaling.


Subject(s)
Cardiotonic Agents/metabolism , Cysteine-Rich Protein 61/metabolism , Myocardial Ischemia/metabolism , Transcription Factors/metabolism , rhoA GTP-Binding Protein/metabolism , Animals , Animals, Newborn , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Heart Ventricles/cytology , In Vitro Techniques , Lysophospholipids/pharmacology , Mice, Knockout , Models, Biological , Myocardial Ischemia/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Protein Binding/drug effects , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Sphingosine/analogs & derivatives , Sphingosine/pharmacology
14.
BMC Cancer ; 14: 124, 2014 Feb 24.
Article in English | MEDLINE | ID: mdl-24564888

ABSTRACT

BACKGROUND: Triple negative breast cancer (TNBC) has higher rates of recurrence and distant metastasis, and poorer outcome as compared to non-TNBC. Aberrant activation of WNT signaling has been detected in TNBC, which might be important for triggering oncogenic conversion of breast epithelial cell. Therefore, we directed our focus on identifying the WNT ligand and its underlying mechanism in TNBC cells. METHODS: We performed large-scale analysis of public microarray data to screen the WNT ligands and the clinical significance of the responsible ligand in TNBC. WNT5B was identified and its overexpression in TNBC was confirmed by immunohistochemistry staining, Western blot and ELISA. ShRNA was used to knockdown WNT5B expression (shWNT5B). Cellular functional alteration with shWNT5B treatment was determined by using wound healing assay, mammosphere assay; while cell cycle and apoptosis were examined by flowcytometry. Mitochondrial morphology was photographed by electron microscope. Biological change of mitochondria was detected by RT-PCR and oxygen consumption assay. Activation of WNT pathway and its downstream targets were evaluated by liciferase assay, immunohistochemistry staining and immunoblot analysis. Statistical methods used in the experiments besides microarray analysis was two-tailed t-test. RESULTS: WNT5B was elevated both in the tumor and the patients' serum. Suppression of WNT5B remarkably impaired cell growth, migration and mammosphere formation. Additionally, G0/G1 cell cycle arrest and caspase-independent apoptosis was observed. Study of the possible mechanism indicated that these effects occurred through suppression of mitochondrial biogenesis, as evidenced by reduced mitochondrial DNA (MtDNA) and compromised oxidative phosphorylation (OXPHOS). In Vivo and in vitro data uncovered that WNT5B modulated mitochondrial physiology was mediated by MCL1, which was regulated by WNT/ß-catenin responsive gene, Myc. Clinic data analysis revealed that both WNT5B and MCL1 are associated with enhanced metastasis and decreased disease-free survival. CONCLUSIONS: All our findings suggested that WNT5B/MCL1 cascade is critical for TNBC and understanding its regulatory apparatus provided valuable insight into the pathogenesis of the tumor development and the guidance for targeting therapeutics.


Subject(s)
Myeloid Cell Leukemia Sequence 1 Protein/biosynthesis , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/mortality , Wnt Proteins/physiology , Cell Line, Tumor , Cell Survival/physiology , Cohort Studies , Female , Humans , Myeloid Cell Leukemia Sequence 1 Protein/physiology , Survival Rate/trends , Triple Negative Breast Neoplasms/diagnosis
15.
Sci Signal ; 6(306): ra108, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24345679

ABSTRACT

Activation of the small guanosine triphosphatase RhoA can promote cell survival in cultured cardiomyocytes and in the heart. We showed that the circulating lysophospholipid sphingosine 1-phosphate (S1P), a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) agonist, signaled through RhoA and phospholipase Cε (PLCε) to increase the phosphorylation and activation of protein kinase D1 (PKD1). Genetic deletion of either PKD1 or its upstream regulator PLCε inhibited S1P-mediated cardioprotection against ischemia/reperfusion injury. Cardioprotection involved PKD1-mediated phosphorylation and inhibition of the cofilin phosphatase Slingshot 1L (SSH1L). Cofilin 2 translocates to mitochondria in response to oxidative stress or ischemia/reperfusion injury, and both S1P pretreatment and SSH1L knockdown attenuated translocation of cofilin 2 to mitochondria. Cofilin 2 associates with the proapoptotic protein Bax, and the mitochondrial translocation of Bax in response to oxidative stress was also attenuated by S1P treatment in isolated hearts or by knockdown of SSH1L or cofilin 2 in cardiomyocytes. Furthermore, SSH1L knockdown, like S1P treatment, increased cardiomyocyte survival and preserved mitochondrial integrity after oxidative stress. These findings reveal a pathway initiated by GPCR agonist-induced RhoA activation, in which PLCε signals to PKD1-mediated phosphorylation of cytoskeletal proteins to prevent the mitochondrial translocation and proapoptotic function of cofilin 2 and Bax and thereby promote cell survival.


Subject(s)
Mitochondria, Heart/metabolism , Oxidative Stress , Phosphoinositide Phospholipase C/metabolism , Phosphoprotein Phosphatases/metabolism , Protein Kinase C/metabolism , Signal Transduction , rhoA GTP-Binding Protein/metabolism , Animals , Cofilin 2/metabolism , Hydrogen Peroxide/pharmacology , Lysophospholipids/metabolism , Mice , Protein Transport , Sphingosine/analogs & derivatives , Sphingosine/metabolism , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL