Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.461
Filter
1.
Front Public Health ; 12: 1427164, 2024.
Article in English | MEDLINE | ID: mdl-39086813

ABSTRACT

Background: Cross-regional settlement management is a key indicator of national health insurance system maturity. Given the significant demand for cross-regional medical treatment among Chinese patients with malignant tumors and the territorially managed health insurance system, further research is necessary to explore the relationship between hospital settlement methods and treatment-seeking behaviors among these patients. This study introduces and validates an evolutionary game model that provides a theoretical foundation for direct settlement policies in cross-regional treatment. Methods: An evolutionary game model was constructed with patients and hospitals serving as strategic players within a dynamic system. This model integrates the patients' treatment utility, medical and nonmedical costs, and hospitals' financial and technological advancement benefits. Results: The evolutionary stability analysis revealed seven-game outcomes between hospitals and patients with malignant tumors. The numerical simulations suggest an evolutionary convergence toward strategy (1, 0), indicating a trend where patients with malignant tumors opt for cross-regional treatment, yet hospitals choose not to implement a direct settlement policy. Parameter sensitivity analysis showed that the parameters set in this study affected player behavioral choices and game equilibria. Conclusion: A strong demand for cross-regional medical treatment among Chinese patients with malignant tumors, and some hospitals require more incentives to implement cross-regional settlements. The key factors influencing the willingness of some patients with malignant tumors to resettle include the costs of in-area medical care, costs of cross-regional treatment without direct settlement, and the utility of cross-regional treatment. Technological advancement benefits and input costs influence some hospitals' motivation to adopt cross-regional settlements. Policy adjustments that effectively implement direct settlement policies can facilitate equilibrium, enhance the initiatives of some local health insurance management departments, improve the accessibility and efficiency of medical services, and reduce nonmedical expenses for patients.


Subject(s)
Game Theory , Neoplasms , Humans , China , Neoplasms/therapy , Hospitals/statistics & numerical data , Patient Acceptance of Health Care/statistics & numerical data , National Health Programs , Models, Theoretical
2.
Food Chem ; 460(Pt 2): 140660, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39089029

ABSTRACT

This study utilized computational simulation and surface molecular imprinting technology to develop a magnetic metal-organic framework molecularly imprinted polymer (Fe3O4@ZIF-8@SMIP) capable of selectively recognizing and detecting multiple fluoroquinolones (FQs). The Fe3O4@ZIF-8@SMIP material was synthesized using the "common" template-ofloxacin, identified by computational simulation, demonstrating notable adsorption capacity (88.61-212.93 mg g-1) and rapid mass-transfer features (equilibration time: 2-3 min) for all tested FQs, consistent with Langmuir adsorption model. Subsequently, this material was employed as a magnetic solid-phase-extraction adsorbent for adsorption and detection of multiple FQs by combining with high performance liquid chromatography. The developed method exhibited good linearity for various FQs within the concentration range of 0.1-500 µg L-1, with low limit of detection (0.0605-0.1529 µg L-1) and limit of quantitation (0.2017-0.5097 µg L-1). Satisfactory recoveries (88.38-103.44%) were obtained when applied to spiked food samples, demonstrating the substantial potential of this Fe3O4@ZIF-8@SMIP material for rapid enrichment and identification for multiple FQs residues.

3.
Mol Cell ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39096898

ABSTRACT

The IscB proteins, as the ancestors of Cas9 endonuclease, hold great promise due to their small size and potential for diverse genome editing. However, their activity in mammalian cells is unsatisfactory. By introducing three residual substitutions in IscB, we observed an average 7.5-fold increase in activity. Through fusing a sequence-non-specific DNA-binding protein domain, the eIscB-D variant achieved higher editing efficiency, with a maximum of 91.3%. Moreover, engineered ωRNA was generated with a 20% reduction in length and slightly increased efficiency. The engineered eIscB-D/eωRNA system showed an average 20.2-fold increase in activity compared with the original IscB. Furthermore, we successfully adapted eIscB-D for highly efficient cytosine and adenine base editing. Notably, eIscB-D is highly active in mouse cell lines and embryos, enabling the efficient generation of disease models through mRNA/ωRNA injection. Our study suggests that these miniature genome-editing tools have great potential for diverse applications.

4.
Opt Lett ; 49(15): 4190-4193, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090891

ABSTRACT

The study of salicylideneaniline (SA) and its derivatives is critical due to their special photophysical properties and environmental sensitivity. In this work, the density time-dependent functional theory (TDDFT) and complete-active-space self-consistent-field (CASSCF) methods were carried out to calculate the substituent effect on excited-state properties and dynamics of SA derivatives. We found the para-substitution triggers the excited-state intramolecular proton transfer (ESIPT) reaction, exhibiting the dual-fluorescent phenomena. However, the meta- and ortho-substitutions impel the non-radiative transition process along the minimum energy conical intersection (MECI), forming the twisted intramolecular charge transfer (TICT) state to prevent ESIPT. This investigation of substituent effects on the photochemical processes and photophysical properties will provide the benchmarks for the design of fluorescent materials.

5.
Pediatr Res ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134757

ABSTRACT

BACKGROUND: Necrotizing enterocolitis (NEC) is a severe gastrointestinal inflammatory disease in neonates. Fucosyltransferase 2 (Fut2) regulates intestinal epithelial cell fucosylation. In this study, we aimed to investigate butyrate-mediated upregulation of Fut2 expression and the underlying mechanisms. METHODS: In vivo and in vitro models were established. SP600125 was used to inhibit the MEK4-JNK pathway, and anisomycin was used to activate the MEK4-JNK pathway. Fut2, occludin, and ZO-1 expressions were assessed. Furthermore, intestinal permeability was analyzed by FITC-Dextran. The expression of proteins in the MEK-4-JNK pathway was examined by western blotting. RESULTS: In vivo, the addition of exogenous butyrate notably upregulated Fut2, occludin, and ZO-1 expressions and reduced intestinal permeability in mice with NEC. Butyrate may increase the phosphorylation of MEK4, JNK, and c-jun, which are key components of the MEK4-JNK pathway. Additionally, SP600125 inhibited their phosphorylation, which was reversed by anisomycin treatment. In vitro, butyrate substantially increased occludin and ZO-1 expressions. Butyrate considerably increased Fut2 expression and markedly upregulated p-MEK4, p-JNK, and p-c-jun expressions. SP600125 administration decreased their expressions, while anisomycin administration increased their expressions. CONCLUSION: Butyrate upregulated Fut2 expression via activation of the MEK4-JNK pathway, improved intestinal barrier integrity, and protected neonatal mice from NEC. IMPACT: We found that exogenous butyrate could improve intestinal barrier integrity and protect against NEC in neonatal mice. Our data showed that exogenous butyrate supplementation upregulated Fut2 expression by activating the MEK4-JNK pathway. Our study provides novel insights into the pathogenesis of NEC, thereby laying an experimental foundation for future clinical research on the use of butyrate in NEC treatment.

6.
Sci Total Environ ; 950: 175300, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111447

ABSTRACT

Excessive accumulation of nitrogen (N) in the soil profile in the intensive agricultural region will seriously threaten groundwater quality and safety. However, the impact of shallow groundwater table (SGWT) fluctuations driven by seasonal variations on the N accumulation characterizations in the soil profiles has not been well quantified, particularly in the regions with thin layer vadose zone. Through in-situ monitoring and simulation experiments, the changes in the SGWT and N accumulation of soil profile in intensive cropland around 7 plateau lakes in Yunnan were studied during the rainy season (RS) and dry season (DS), and the N loss in soil profile of cropland driven by SGWT fluctuations was estimated. The results showed that the SGWT and N accumulation in soil profile of cropland around the plateau lakes had obvious seasonal variation characteristics. The proportion of N storage in different forms in 60-100 cm soil layer in the RS was greater than that in the DS, particularly the proportion of NH4+-N storage was as high as 55 %, while N accumulation in surface soil was obvious in the DS. Compared with the DS, due to the rising SGWT in the RS, the maximum storages of TN and NO3--N in the 0-100 cm soil layer decreased by17% and 36 %, respectively. The TN loss intensities from the 0-100 cm soil profiles of cropland around Fuxian Lake, Yilong Lake, Qilu Lake, Dianchi Lake, Yangzong Lake, Erhai Lake, and Xingyun Lake were 74, 54, 127, 105, 93, 72 and 207 kg/ha, respectively. Moreover, if the SGWT was <30 cm, the average TN loss intensity and amount could reach 177 kg/ha and 1250 t, respectively. Therefore, the SGWT regulation was one of the key measures to reducing soil N loss from the thin layer vadose zone of cropland around plateau lakes and improving groundwater quality.

7.
Stem Cell Res Ther ; 15(1): 243, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113141

ABSTRACT

Mesenchymal stem cells (MSCs) therapy is a highly researched treatment that has the potential to promote immunomodulation and anti-inflammatory, anti-apoptotic, and antimicrobial activities. It is thought that it can enhance internal organ function, reverse tissue remodeling, and achieve significant organ repair and regeneration. However, the limited infusion, survival, and engraftment of transplanted MSCs diminish the effectiveness of MSCs-based therapy. Consequently, various preconditioning methods have emerged as strategies for enhancing the therapeutic effects of MSCs and achieving better clinical outcomes. In particular, the use of natural small molecule compounds (NSMs) as a pretreatment strategy is discussed in this narrative review, with a focus on their roles in regulating MSCs for injury repair in vital internal organs. Additionally, the discussion focuses on the future directions and challenges of transforming mesenchymal stem cell research into clinical applications.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cell Transplantation/methods , Animals , Biological Products/pharmacology , Biological Products/therapeutic use , Wound Healing/drug effects
8.
Diabetes Obes Metab ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118216

ABSTRACT

AIM: To elucidate the effects of sleep parameters and renal function on the risk of developing new-onset severe metabolic dysfunction-associated steatotic liver disease (MASLD). MATERIALS AND METHODS: The primary analysis involved a cohort of 305 257 participants. Multivariable Cox models were employed to calculate hazard ratios and 95% confidence intervals. Traditional mediation and two-step Mendelian randomization (MR) analyses were conducted to assess the associations and mediating roles of renal function indicators between sleep and new-onset severe MASLD. RESULTS: Poor sleep score and renal function biomarker score (RFS) were associated with an increased risk of new-onset severe MASLD (all ptrend <0.001). Participants with poor sleep patterns and the highest RFS had a 5.45-fold higher risk of new-onset severe MASLD, compared to those with healthy sleep patterns and the lowest RFS (p < 0.001). The RFS could explain 10.08% of the correlations between poor sleep score and risk of new-onset severe MASLD. Additionally, MR analyses supported a causal link between insomnia and new-onset severe MASLD and revealed a mediating role of chronic kidney disease in the connection between insomnia and new-onset severe MASLD risk. CONCLUSIONS: This study highlights the independent and combined associations of sleep parameters and renal function indicators with new-onset severe MASLD, underscoring the bidirectional communication of the liver-kidney axis and providing modifiable strategies for preventing MASLD.

9.
Stem Cells Int ; 2024: 3100942, 2024.
Article in English | MEDLINE | ID: mdl-39108701

ABSTRACT

The ovary is an important organ for women to maintain reproductive and endocrine functions. Ovarian aging can lead to female reproductive aging, which is a key factor causing rapid aging of the female body. Umbilical cord-derived MSCs (UC-MSCs) play a therapeutic role in various degenerative diseases. Dehydroepiandrosterone (DHEA) is widely used in the treatment of reversing oocyte quality. However, it is unclear whether UC-MSCs combined with DHEA supplementation can improve ovarian senescence in naturally aging mice. To address this question, we studied the influence of the combination of human UC-MSCs (hUC-MSCs) and DHEA on ovarian morphology and function in naturally aging mice. The results showed a significant augmentation in the number of primary follicles, as well as a significant upregulation of estradiol (E2), follicle-stimulating hormone (FSH), and anti-Mullerian hormone (AMH) hormone levels, and a significant increase in survival rate in naturally aging mice treated by hUC-MSCs and DHEA. Moreover, the combination of hUC-MSCs and DHEA significantly reduced the reactive oxygen species (ROS) level and downregulated the expression levels of proinflammatory factors IL-6, IL-18, and TNF-α. Furthermore, the PI3K/AKT/mTOR pathway was inhibited. Conclusively, the combination therapy of hUC-MSC + DHEA contributed to restore ovarian function in aging mice and extend their lifespan by restoring hormone levels and inhibiting inflammatory factors.

10.
Cell Rep ; 43(8): 114596, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39110591

ABSTRACT

The Ralstonia solanacearum species complex causes bacterial wilt in a variety of crops. Tomato cultivar Hawaii 7996 is a widely used resistance resource; however, the resistance is evaded by virulent strains, with the underlying mechanisms still unknown. Here, we report that the phylotype Ⅱ strain ES5-1 can overcome Hawaii 7996 resistance. RipV2, a type Ⅲ effector specific to phylotype Ⅱ strains, is vital in overcoming tomato resistance. RipV2, which encodes an E3 ubiquitin ligase, suppresses immune responses and Toll/interleukin-1 receptor/resistance nucleotide-binding/leucine-rich repeat (NLR) (TNL)-mediated cell death. Tomato helper NLR N requirement gene 1 (NRG1), enhanced disease susceptibility 1 (EDS1), and senescence-associated gene 101b (SAG101b) are identified as RipV2 target proteins. RipV2 is essential for ES5-1 virulence in Hawaii 7996 but not in SlNRG1-silenced tomato, demonstrating SlNRG1 to be an RipV2 virulence target. Our results dissect the mechanisms of RipV2 in disrupting immunity and highlight the importance of converged immune components in conferring bacterial wilt resistance.

11.
Cell Rep ; 43(8): 114592, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39110593

ABSTRACT

Vesicle-associated membrane protein (VAMP)-associated proteins (VAPs) are highly conserved endoplasmic reticulum (ER)-resident proteins that establish ER contacts with multiple membrane compartments in many eukaryotes. However, VAP-mediated membrane-tethering mechanisms remain ambiguous. Here, focusing on fission yeast ER-plasma membrane (PM) contact formation, using systematic interactome analyses and quantitative microscopy, we predict a non-VAP-protein direct binding-based ER-PM coupling. We further reveal that VAP-anionic phospholipid interactions may underlie ER-PM association and define the pH-responsive nature of VAP-tethered membrane contacts. Such conserved interactions with anionic phospholipids are generally defective in amyotrophic lateral sclerosis-associated human VAPB mutant. Moreover, we identify a conserved FFAT-like motif locating at the autoinhibitory hotspot of the essential PM proton pump Pma1. This modulatory VAP-Pma1 interaction appears crucial for pH homeostasis. We thus propose an ingenious strategy for maintaining intracellular pH by coupling Pma1 modulation with pH-sensory ER-PM contacts via VAP-mediated interactions.

12.
Curr Opin Insect Sci ; : 101249, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111543

ABSTRACT

Ticks pose a major threat to the health of humans and animals. The use of synthetic acaricides and repellents has raised the concerns of potential health and environmental risks, and increasing resistance in ticks. This article highlights the importance of the research on tick chemosensation in developing novel control agents. It provides a review on our current understanding of tick chemosensory system, and proposes using chemosensory receptor (CR) genes as molecular targets to discover novel tick control agents. The releases of high-quality tick genomes provide unprecedented opportunities to explore CR gene repertoires. Further functional characterization is necessary to identify the receptors for key chemical cues and signals and unravel whether tick chemosensation involves ionotropic and/or metabotropic mechanisms.

13.
Sci Data ; 11(1): 847, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103399

ABSTRACT

Mixed emotions have attracted increasing interest recently, but existing datasets rarely focus on mixed emotion recognition from multimodal signals, hindering the affective computing of mixed emotions. On this basis, we present a multimodal dataset with four kinds of signals recorded while watching mixed and non-mixed emotion videos. To ensure effective emotion induction, we first implemented a rule-based video filtering step to select the videos that could elicit stronger positive, negative, and mixed emotions. Then, an experiment with 80 participants was conducted, in which the data of EEG, GSR, PPG, and frontal face videos were recorded while they watched the selected video clips. We also recorded the subjective emotional rating on PANAS, VAD, and amusement-disgust dimensions. In total, the dataset consists of multimodal signal data and self-assessment data from 73 participants. We also present technical validations for emotion induction and mixed emotion classification from physiological signals and face videos. The average accuracy of the 3-class classification (i.e., positive, negative, and mixed) can reach 80.96% when using SVM and features from all modalities, which indicates the possibility of identifying mixed emotional states.


Subject(s)
Emotions , Humans , Electroencephalography , Facial Expression , Video Recording
15.
IEEE Trans Cybern ; PP2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078753

ABSTRACT

This article addresses an adaptive neural network (NN) sliding-mode control (SMC) strategy for fuzzy singularly perturbed systems against unrestricted deception attacks and stochastic communication protocol (SCP). Instead of relying on the traditional transition probability, a sojourn-probability-based SCP is efficiently established to characterize the stochastic nature more precisely. In response to unrestricted deception attacks, an NN-based technique is deployed to estimate and counteract their detrimental impacts on system performance. Moreover, the design of the sliding-mode controller integrates the singular perturbation parameter and fuzzy rules, addressing the challenge of imperfect premise matching. The proposed controller guarantees exponential ultimate boundedness in the mean square sense and ensures the reachability of the specified sliding surface for the closed-loop system. Finally, the efficacy of the proposed theoretical framework is validated through two illustrative examples, confirming its practical applicability and robustness.

16.
Eur J Immunol ; : e2350887, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39072704

ABSTRACT

The migration is the key step for thymic T cells to enter circulation and then lymph nodes (LNs), essential for future immune surveillance. Although promoter-based transcriptional regulation through Foxo1, Klf2, Ccr7, and Sell regulates T-cell migration, it remains largely unexplored whether and how enhancers are involved in this process. Here we found that the conditional deletion of Med1, a component of the mediator complex and a mediator between enhancers and RNA polymerase II, caused a reduction of both CD4+ and CD8+ T cells in LNs, as well as a decrease of CD8+ T cells in the spleen. Importantly, Med1 deletion hindered the migration of thymic αßT cells into the circulation and then into LNs, accompanied by the downregulation of KLF2, CCR7, and CD62L. Mechanistically, Med1 promotes Klf2 transcription by facilitating Foxo1 binding to the Klf2 enhancer. Furthermore, forced expression of Klf2 rescued Ccr7 and Sell expression, as well as αßT-cell migration into LNs. Collectively, our study unveils a crucial role for Med1 in regulating the enhancer-based Foxo1-Klf2 transcriptional program and the migration of αßT cells into LNs, providing valuable insights into the molecular mechanisms underlying T-cell migration.

17.
BMC Plant Biol ; 24(1): 626, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961401

ABSTRACT

BACKGROUND: The calmodulin (CaM) and calmodulin-like (CML) proteins play regulatory roles in plant growth and development, responses to biotic and abiotic stresses, and other biological processes. As a popular fruit and ornamental crop, it is important to explore the regulatory mechanism of flower and fruit development of passion fruit. RESULTS: In this study, 32 PeCaM/PeCML genes were identified from passion fruit genome and were divided into 9 groups based on phylogenetic analysis. The structural analysis, including conserved motifs, gene structure and homologous modeling, illustrates that the PeCaM/PeCML in the same subgroup have relative conserved structural features. Collinearity analysis suggested that the expansion of the CaM/CML gene family likely took place mainly by segmental duplication, and the whole genome replication events were closely related with the rapid expansion of the gene group. PeCaM/PeCMLs were potentially required for different floral tissues development. Significantly, PeCML26 had extremely high expression levels during ovule and fruit development compared with other PeCML genes, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. The co-presence of various cis-elements associated with growth and development, hormone responsiveness, and stress responsiveness in the promoter regions of these PeCaM/PeCMLs might contribute to their diverse regulatory roles. Furthermore, PeCaM/PeCMLs were also induced by various abiotic stresses. This work provides a comprehensive understanding of the CaM/CML gene family and valuable clues for future studies on the function and evolution of CaM/CML genes in passion fruit. CONCLUSION: A total of 32 PeCaM/PeCML genes were divided into 9 groups. The PeCaM/PeCML genes showed differential expression patterns in floral tissues at different development stages. It is worth noting that PeCML26, which is highly homologous to AtCaM2, not only interacts with multiple BBR-BPC TFs, but also has high expression levels during ovule and fruit development, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. This research lays the foundation for future investigations and validation of the potential function of PeCaM/PeCML genes in the growth and development of passion fruit.


Subject(s)
Calmodulin , Flowers , Fruit , Passiflora , Phylogeny , Plant Proteins , Passiflora/genetics , Passiflora/growth & development , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Calmodulin/genetics , Calmodulin/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Genome, Plant , Genes, Plant , Gene Expression Profiling
18.
Front Pharmacol ; 15: 1430780, 2024.
Article in English | MEDLINE | ID: mdl-38966555

ABSTRACT

Background and Objective: Ginseng has been regarded as a precious medicinal herb with miraculous effects in Eastern culture. The primary chemical constituents of ginseng are saponins, and the physiological activities of ginsenosides determine their edible and medicinal value. The aim of this study is to comprehensively and systematically investigate the kinetic processes of 20(S)-protopanaxadiol (PPD) in rats and dogs, in order to promote the rational combination of ginseng as a drug and dietary ingredient. Methods: PPD was administered, and drug concentration in different biological samples were detected by liquid chromatography tandem mass spectrometry (LC/MS/MS) and radioactive tracer methods. Pharmacokinetic parameters such as absorption, bioavailability, tissue distribution, plasma protein binding rate, excretion rate, and cumulative excretion were calculated, along with inference of major metabolites. Results: This study systematically investigated the absorption, distribution, metabolism, excretion (ADME) of PPD in rats and dogs for the first time. The bioavailabilities of PPD were relatively low, with oral absorption nearly complete, and the majority underwent first-pass metabolism. PPD had a high plasma protein binding rate and was relatively evenly distributed in the body. Following oral administration, PPD underwent extensive metabolism, potentially involving one structural transformation and three hydroxylation reactions. The metabolites were primarily excreted through feces and urine, indicating the presence of enterohepatic circulation. The pharmacokinetic processes of PPD following intravenous administration aligned well with a three-compartment model. In contrast, after gastric administration, it fitted better with a two-compartment model, conforming to linear pharmacokinetics and proportional elimination. There were evident interspecies differences between rats and dogs regarding PPD, but individual variations of this drug were minimal within the same species. Conclusion: This study systematically studied the kinetic process of PPD in rats and also investigated the kinetic characteristics of PPD in dogs for the first time. These findings lay the foundation for further research on the dietary nutrition and pharmacological effects of PPD.

19.
PLoS Genet ; 20(7): e1011339, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38980841

ABSTRACT

BACKGROUND: Varicose veins (VV) are one of the common human diseases, but the role of genetics in its development is not fully understood. METHODS: We conducted an exome-wide association study of VV using whole-exome sequencing data from the UK Biobank, and focused on common and rare variants using single-variant association analysis and gene-level collapsing analysis. FINDINGS: A total of 13,823,269 autosomal genetic variants were obtained after quality control. We identified 36 VV-related independent common variants mapping to 34 genes by single-variant analysis and three rare variant genes (PIEZO1, ECE1, FBLN7) by collapsing analysis, and most associations between genes and VV were replicated in FinnGen. PIEZO1 was the closest gene associated with VV (P = 5.05 × 10-31), and it was found to reach exome-wide significance in both single-variant and collapsing analyses. Two novel rare variant genes (ECE1 and METTL21A) associated with VV were identified, of which METTL21A was associated only with females. The pleiotropic effects of VV-related genes suggested that body size, inflammation, and pulmonary function are strongly associated with the development of VV. CONCLUSIONS: Our findings highlight the importance of causal genes for VV and provide new directions for treatment.


Subject(s)
Exome Sequencing , Exome , Genetic Predisposition to Disease , Genome-Wide Association Study , Varicose Veins , Humans , Varicose Veins/genetics , Female , Male , Exome/genetics , Polymorphism, Single Nucleotide , Endothelin-Converting Enzymes/genetics , Middle Aged , Genetic Variation , Adult , Ion Channels
20.
BMC Public Health ; 24(1): 1812, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972984

ABSTRACT

BACKGROUND: Smoking rationalisation beliefs are a huge barrier to quitting smoking. What types of rationalisations should be emphasised in smoking cessation interventions? Although past literature has confirmed the negative relationship between those beliefs and motivation to stop smoking, little is known regarding the importance and performance of those beliefs on motivation with varying cigarette dependence. The study aimed to ascertain rationalisations that are highly important for motivation yet perform poorly in different cigarette dependence groups. METHODS: The cross-sectional study was conducted from November 19 to December 9, 2023 in Guiyang City, China. Adult male current smokers were enrolled. Partial least squares structural equation modelling was used to test the hypothesis. The multi-group analysis was used to determine the moderating effect of cigarette dependence, and the importance-performance map analysis was utilised to assess the importance and performance of rationalisations. RESULTS: A total of 616 adult male current smokers were analysed, and they were divided into the low cigarette dependence group (n = 297) and the high cigarette dependence group (n = 319). Except for risk generalisation beliefs, smoking functional beliefs (H1: -ß = 0.131, P < 0.01), social acceptability beliefs (H3: ß = -0.258, P < 0.001), safe smoking beliefs (H4: ß = -0.078, P < 0.05), self-exempting beliefs (H5: ß = -0.244, P < 0.001), and quitting is harmful beliefs (H6: ß = -0.148, P < 0.01) all had a significant positive influence on motivation. Cigarette dependence moderated the correlation between rationalisations and motivation. In the high-dependence group, the social acceptability beliefs and smoking functional beliefs were located in the "Concentrate Here" area. In the low-dependence group, the social acceptability beliefs were also situated in there. CONCLUSIONS: Social acceptability beliefs and smoking functional beliefs showed great potential and value for improvement among high-dependence smokers, while only social acceptability beliefs had great potential and value for improvement among low-dependence smokers. Addressing these beliefs will be helpful for smoking cessation. The multi-group analysis and the importance-performance map analysis technique have practical implications and can be expanded to other domains of health education and intervention practice.


Subject(s)
Motivation , Smoking Cessation , Humans , Male , China , Cross-Sectional Studies , Adult , Smoking Cessation/psychology , Middle Aged , Smokers/psychology , Smokers/statistics & numerical data , Health Knowledge, Attitudes, Practice , Young Adult , Tobacco Use Disorder/psychology , Tobacco Use Disorder/therapy , East Asian People
SELECTION OF CITATIONS
SEARCH DETAIL