Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Biol ; 34(10): 2147-2161.e5, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38688284

ABSTRACT

An increasing number of metazoans undergo programmed DNA elimination (PDE), where a significant amount of DNA is selectively lost from the somatic genome during development. In some nematodes, PDE leads to the removal and remodeling of the ends of all germline chromosomes. In several species, PDE also generates internal breaks that lead to sequence loss and increased numbers of somatic chromosomes. The biological significance of these karyotype changes associated with PDE and the origin and evolution of nematode PDE remain largely unknown. Here, we assembled the single germline chromosome of the nematode Parascaris univalens and compared the karyotypes, chromosomal gene organization, and PDE features among other nematodes. We show that PDE in Parascaris converts an XX/XY sex-determination system in the germline into an XX/XO system in the somatic cells. Comparisons of Ascaris, Parascaris, and Baylisascaris ascarid chromosomes suggest that PDE existed in the ancestor of these nematodes, and their current distinct germline karyotypes were derived from fusion events of smaller ancestral chromosomes. The DNA breaks involved in PDE resolve these fused germline chromosomes into their pre-fusion karyotypes. These karyotype changes may lead to alterations in genome architecture and gene expression in the somatic cells. Cytological and genomic analyses further suggest that satellite DNA and the heterochromatic chromosome arms are dynamic and may play a role during meiosis. Overall, our results show that chromosome fusion and PDE have been harnessed in these ascarids to sculpt their karyotypes, altering the genome organization and serving specific functions in the germline and somatic cells.


Subject(s)
Karyotype , Animals , Male , Chromosomes/genetics , Nematoda/genetics , Female , DNA, Helminth/genetics
2.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187595

ABSTRACT

A growing list of metazoans undergo programmed DNA elimination (PDE), where a significant amount of DNA is selectively lost from the somatic genome during development. In some nematodes, PDE leads to the removal and remodeling of the ends of all germline chromosomes. In several species, PDE also generates internal breaks that lead to sequence loss and an increased number of somatic chromosomes. The biological significance of these karyotype changes associated with PDE and the origin and evolution of nematode PDE remain largely unknown. Here, we assembled the single germline chromosome of the horse parasite Parascaris univalens and compared the karyotypes, chromosomal gene organization, and PDE features among ascarid nematodes. We show that PDE in Parascaris converts an XX/XY sex-determination system in the germline into an XX/XO system in the somatic cells. Comparisons of Ascaris, Parascaris, and Baylisascaris ascarid chromosomes suggest that PDE existed in the ancestor of these parasites, and their current distinct germline karyotypes were derived from fusion events of smaller ancestral chromosomes. The DNA breaks involved in PDE resolve these fused germline chromosomes into their pre-fusion karyotypes, leading to alterations in genome architecture and gene expression in the somatic cells. Cytological and genomic analyses further suggest that satellite DNA and the heterochromatic chromosome arms play a dynamic role in the Parascaris germline chromosome during meiosis. Overall, our results show that chromosome fusion and PDE have been harnessed in these ascarids to sculpt their karyotypes, altering the genome organization and serving specific functions in the germline and somatic cells.

3.
Curr Biol ; 32(23): 5083-5098.e6, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36379215

ABSTRACT

Programmed DNA elimination (PDE) is a notable exception to the paradigm of genome integrity. In metazoa, PDE often occurs coincident with germline to somatic cell differentiation. During PDE, portions of genomic DNA are lost, resulting in reduced somatic genomes. Prior studies have described the sequences lost, as well as chromosome behavior, during metazoan PDE. However, a system for studying the mechanisms and consequences of PDE in metazoa is lacking. Here, we present a functional and genetic model for PDE in the free-living Rhabditidae nematode Oscheius tipulae, a family that also includes Caenorhabditis elegans. O. tipulae was recently suggested to eliminate DNA. Using staged embryos and DNA FISH, we showed that O. tipulae PDE occurs during embryogenesis at the 8-16 cell stages. We identified a conserved motif, named Sequence For Elimination (SFE), for all 12 break sites on the six chromosomes at the junctions of retained and eliminated DNA. SFE mutants exhibited a "fail-to-eliminate" phenotype only at the modified sites. END-seq revealed that breaks can occur at multiple positions within the SFE, with extensive end resection followed by telomere addition to both retained and eliminated ends. We identified many functional SFEs at the chromosome ends through END-seq in the wild-type embryos, genome sequencing of SFE mutants, and comparative genomics of 23 wild isolates. We suggest that these alternative SFEs provide flexibility in the sequences eliminated and a fail-safe mechanism for PDE. These studies establish O. tipulae as a new, attractive model for studying the mechanisms and consequences of PDE in a metazoan.


Subject(s)
Genomics , Models, Genetic , Animals , DNA
4.
Trends Genet ; 38(5): 483-500, 2022 05.
Article in English | MEDLINE | ID: mdl-35227512

ABSTRACT

Programmed elimination of DNA during development yields somatic cell nuclei with dramatically different DNA sequence and content relative to germline nuclei, profoundly influencing genome architecture and stability. Whole-genome sequencing has significantly expanded the list of taxa known to exhibit this trait and has revealed the identity of excised genes and transposable elements (TEs) in certain taxa. Here, we compare the diverse mechanisms employed by ciliates, nematodes, copepods, and lamprey to downsize their genomes during development and propose tests of hypotheses about the evolution and/or maintenance of this trait. We explore possible functional roles that programmed DNA elimination (PDE) could play in genomic defense (especially against TEs), regulation of development, sex determination, co-option, and modulating nucleotypic effects, which together argue for a place in the mainstream investigation of genome evolution.


Subject(s)
DNA Transposable Elements , Genomics , Base Sequence , Cell Nucleus/genetics , DNA Transposable Elements/genetics , Evolution, Molecular , Germ Cells
5.
Nat Commun ; 13(1): 837, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35149688

ABSTRACT

Small RNA pathways play key and diverse regulatory roles in C. elegans, but our understanding of their conservation and contributions in other nematodes is limited. We analyzed small RNA pathways in the divergent parasitic nematode Ascaris. Ascaris has ten Argonautes with five worm-specific Argonautes (WAGOs) that associate with secondary 5'-triphosphate 22-24G-RNAs. These small RNAs target repetitive sequences or mature mRNAs and are similar to the C. elegans mutator, nuclear, and CSR-1 small RNA pathways. Even in the absence of a piRNA pathway, Ascaris CSR-1 may still function to "license" as well as fine-tune or repress gene expression. Ascaris ALG-4 and its associated 26G-RNAs target and likely repress specific mRNAs during testis meiosis. Ascaris WAGO small RNAs demonstrate target plasticity changing their targets between repeats and mRNAs during development. We provide a unique and comprehensive view of mRNA and small RNA expression throughout spermatogenesis. Overall, our study illustrates the conservation, divergence, dynamics, and flexibility of small RNA pathways in nematodes.


Subject(s)
Ascaris/genetics , Ascaris/metabolism , RNA, Small Interfering/metabolism , Animals , Argonaute Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Gene Expression Regulation, Developmental , Gene Silencing , Germ Cells/metabolism , Phylogeny , RNA, Messenger/metabolism , Spermatogenesis/genetics
6.
Biochem Soc Trans ; 49(5): 1891-1903, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34665225

ABSTRACT

In a multicellular organism, the genomes of all cells are in general the same. Programmed DNA elimination is a notable exception to this genome constancy rule. DNA elimination removes genes and repetitive elements in the germline genome to form a reduced somatic genome in various organisms. The process of DNA elimination within an organism is highly accurate and reproducible; it typically occurs during early embryogenesis, coincident with germline-soma differentiation. DNA elimination provides a mechanism to silence selected genes and repeats in somatic cells. Recent studies in nematodes suggest that DNA elimination removes all chromosome ends, resolves sex chromosome fusions, and may also promote the birth of novel genes. Programmed DNA elimination processes are diverse among species, suggesting DNA elimination likely has evolved multiple times in different taxa. The growing list of organisms that undergo DNA elimination indicates that DNA elimination may be more widespread than previously appreciated. These various organisms will serve as complementary and comparative models to study the function, mechanism, and evolution of programmed DNA elimination in metazoans.


Subject(s)
DNA Transposable Elements/genetics , Gene Silencing , Animals , Chromosomes/genetics , Embryonic Development/genetics , Evolution, Molecular , Gene Expression , Gene Expression Regulation , Germ Cells , Humans
7.
Cytogenet Genome Res ; 156(3): 165-172, 2018.
Article in English | MEDLINE | ID: mdl-30376670

ABSTRACT

Chromatin diminution (CD) is a phenomenon of programmed DNA elimination which takes place in early embryogenesis in some eukaryotes. The mechanism and biological role of CD remain largely unknown. During CD in the freshwater copepod Cyclops kolensis, the genome of cells of the somatic lineage is reorganized and reduced in size by more than 90% without affecting the genome of germline cells. Although the diploid chromosome number is unchanged, chromosome size is dramatically reduced by CD. The eliminated DNA consists primarily of repetitive sequences and localizes within granules during the elimination process. In this review, we provide an overview of CD in C. kolensis including both cytological and molecular studies.


Subject(s)
Chromatin/genetics , Copepoda/genetics , DNA/genetics , Genome , Animals , Blastomeres , Chromosomes , Copepoda/embryology , DNA/chemistry , Germ Cells , Interphase , Nucleic Acid Conformation
8.
Front Genet ; 8: 154, 2017.
Article in English | MEDLINE | ID: mdl-29093734

ABSTRACT

Recently, human semen was shown to contain cell-free nucleic acids, such as DNA, long single stranded RNA, and small RNAs-miRNA and piRNA. The RNAs have been suggested to have potential biological roles as communication molecules between cells and in the temporal and spatial regulation of gene expression in the male reproductive system. Here we demonstrate that human seminal plasma contains a variety of cell-free dsRNAs, describe a robust method to isolate this type of nucleic acid in preparative amounts, and discuss the potential biological roles of these molecules in inheritance. dsRNA plays a role in a variety of biological processes, including gene regulation, is extremely stable and can gain access to cells from the extracellular medium. We suggest that one of the possible functions of dsRNA in human seminal plasma may be to influence human oocytes and therefore, influence the offspring. It also remains possible that these dsRNAs might have potential use as biomarkers for the study of human physiopathological conditions and genetic variation.

9.
Biomed Res Int ; 2014: 926342, 2014.
Article in English | MEDLINE | ID: mdl-25215300

ABSTRACT

The utility of various regions of the ribosomal repeat unit for phylogenetic analysis was examined in 16 species representing four families, nine genera, and two orders of the subclass Copepoda (Crustacea). Fragments approximately 2000 bp in length containing the ribosomal DNA (rDNA) 18S and 28S gene fragments, the 5.8S gene, and the internal transcribed spacer regions I and II (ITS1 and ITS2) were amplified and analyzed. The DAMBE (Data Analysis in Molecular Biology and Evolution) software was used to analyze the saturation of nucleotide substitutions; this test revealed the suitability of both the 28S gene fragment and the ITS1/ITS2 rDNA regions for the reconstruction of phylogenetic trees. Distance (minimum evolution) and probabilistic (maximum likelihood, Bayesian) analyses of the data revealed that the 28S rDNA and the ITS1 and ITS2 regions are informative markers for inferring phylogenetic relationships among families of copepods and within the Cyclopidae family and associated genera. Split-graph analysis of concatenated ITS1/ITS2 rDNA regions of cyclopoid copepods suggested that the Mesocyclops, Thermocyclops, and Macrocyclops genera share complex evolutionary relationships. This study revealed that the ITS1 and ITS2 regions potentially represent different phylogenetic signals.


Subject(s)
Copepoda/genetics , DNA, Ribosomal Spacer/genetics , Evolution, Molecular , Phylogeny , Animals , Bayes Theorem , Genetic Variation , RNA, Ribosomal, 28S/genetics , Repetitive Sequences, Nucleic Acid/genetics
SELECTION OF CITATIONS
SEARCH DETAIL