Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
PLoS Pathog ; 20(5): e1012214, 2024 May.
Article En | MEDLINE | ID: mdl-38722857

Epithelial cells function as the primary line of defense against invading pathogens. However, bacterial pathogens possess the ability to compromise this barrier and facilitate the transmigration of bacteria. Nonetheless, the specific molecular mechanism employed by Mycobacterium tuberculosis (M.tb) in this process is not fully understood. Here, we investigated the role of Rv2569c in M.tb translocation by assessing its ability to cleave E-cadherin, a crucial component of cell-cell adhesion junctions that are disrupted during bacterial invasion. By utilizing recombinant Rv2569c expressed in Escherichia coli and subsequently purified through affinity chromatography, we demonstrated that Rv2569c exhibited cell wall-associated serine protease activity. Furthermore, Rv2569c was capable of degrading a range of protein substrates, including casein, fibrinogen, fibronectin, and E-cadherin. We also determined that the optimal conditions for the protease activity of Rv2569c occurred at a temperature of 37°C and a pH of 9.0, in the presence of MgCl2. To investigate the function of Rv2569c in M.tb, a deletion mutant of Rv2569c and its complemented strains were generated and used to infect A549 cells and mice. The results of the A549-cell infection experiments revealed that Rv2569c had the ability to cleave E-cadherin and facilitate the transmigration of M.tb through polarized A549 epithelial cell layers. Furthermore, in vivo infection assays demonstrated that Rv2569c could disrupt E-cadherin, enhance the colonization of M.tb, and induce pathological damage in the lungs of C57BL/6 mice. Collectively, these results strongly suggest that M.tb employs the serine protease Rv2569c to disrupt epithelial defenses and facilitate its systemic dissemination by crossing the epithelial barrier.


Bacterial Proteins , Cadherins , Epithelial Cells , Mycobacterium tuberculosis , Serine Proteases , Cadherins/metabolism , Mycobacterium tuberculosis/pathogenicity , Mycobacterium tuberculosis/metabolism , Animals , Humans , Mice , Serine Proteases/metabolism , Serine Proteases/genetics , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , A549 Cells , Tuberculosis/microbiology , Tuberculosis/metabolism , Female
2.
Int J Biol Macromol ; 253(Pt 8): 127547, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37863130

Macrophages serve as the primary immune cells responsible for the innate immune defense against Mycobacterium tuberculosis (MTB) infection within the host. Specifically, NLRP3, a member of the NLRs family, plays a significant role in conferring resistance against MTB infection. Conversely, MTB evades innate immune killing by impeding the activation of the NLRP3 inflammasome, although the precise mechanism remains uncertain. In this study, we have identified PE12 (Rv1172c), a member of the PE/PPE family proteins, as an extracellular protein of MTB. PE12 interacts with Toll like receptor 4 (TLR4) in macrophages, forming the PE12-TLR4 complex which subsequently inhibits the transcription and expression of NLRP3. As a result, the transcription and secretion of IL-1ß are reduced through the PE12-TLR4-NLRP3-IL-1ß immune pathway. In vitro and in vivo experiments using a PE12-deficient strain (H37RvΔPE12) demonstrate a weakening of the suppression of the inflammatory response to MTB infection. Our findings highlight the role of the PE12 protein in not only inhibiting the transcription and release of inflammatory cytokines but also mediating the killing of MTB escape macrophages through TLR4 and inducing lung injury in MTB-infected mice. These results provide evidence that PE12 plays a significant role in the inhibition of the host immune response by MTB.


Mycobacterium tuberculosis , Animals , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Macrophages/metabolism , Inflammasomes/metabolism
3.
Microb Pathog ; 173(Pt B): 105880, 2022 Dec.
Article En | MEDLINE | ID: mdl-36402348

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb). Mtb can overcome macrophage intracellular killing and lead to persistent infections. The proteases of Mtb are critical virulence factors that participate in immune responses. We determined that Rv3090 is a cell wall-associated protease and a potential pathogenic factor. To characterize the role of Rv3090 in Mtb, recombinant Msg_Rv3090 and Msg_pAIN strains were constructed to infect macrophages and mice. Lactate dehydrogenase assays and flow cytometry results showed that Rv3090 induces late macrophage apoptosis. In vivo infection experiments indicated that Rv3090 could induce hepatocyte and lung cell apoptosis and cause pathological damage to the spleen, livers and lungs. Msg_Rv3090 specifically stimulated the secretion of inflammatory cytokines including TNF-α, IL-6 and IL-1ß. Overexpression of Rv3090 significantly promoted the survival of Msg in livers and lungs. Thus, Rv3090 protease triggered late cell apoptosis and contributed to the pathogenicity and dissemination of Mtb.


Mycobacterium tuberculosis , Peptide Hydrolases , Animals , Mice , Apoptosis , Endopeptidases , Virulence Factors
4.
DNA Cell Biol ; 41(12): 1063-1074, 2022 Dec.
Article En | MEDLINE | ID: mdl-36394437

l-Arginine serves as a carbon and nitrogen source and is critical for Mycobacterium tuberculosis (Mtb) survival in the host. Generally, ArgR acts as a repressor regulating arginine biosynthesis by binding to the promoter of the argCJBDFGH gene cluster. In this study, we report that the dormancy regulator DosR is a novel arginine regulator binding to the promoter region of argC (rv1652), which regulates arginine synthesis. Phosphorylation modification promoted DosR binding to a region upstream of the promoter. Cofactors, including arginine and metal ions, had an inhibitory effect on this association. Furthermore, DosR regulatory function relies on the interaction of the 167, 181, 182, and 197 amino acid residues with an inverse complementary sequence. Arginine also binds to DosR and directly affects its DNA-binding ability. Together, the results demonstrate that DosR acts as a novel transcriptional regulator of arginine synthesis in Mycobacterium bovis bacille Calmette-Guerin.


Mycobacterium bovis , Mycobacterium tuberculosis , Mycobacterium bovis/genetics , Mycobacterium bovis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Arginine/genetics , Arginine/metabolism , Multigene Family
5.
Vet Microbiol ; 273: 109529, 2022 Oct.
Article En | MEDLINE | ID: mdl-35944391

Extracellular DNases/nucleases are important virulence factors in many bacteria. However, no DNase/nucleases have been reported in Mycobacterium avium subsp. paratuberculosis (MAP), which is a pathogen of paratuberculosis. Genome analyses of MAP K-10 revealed that the map3916c gene putatively encodes a nuclease. In this study, we show that MAP3916c is an extracellular nonspecific DNase requiring a divalent cation, especially Mg2+. The optimum DNase activity of MAP3916c was exhibited at 41 °C and pH 9.0. Site-directed mutagenesis studies indicated that 125-Histidine is necessary for MAP3916c DNase activity. In addition, MAP3916c DNase could destroy the neutrophil extracellular traps (NETs) induced by Phorbol 12-myristate 13-acetate in vitro and degrade the NETs induced by MAP K-10 upon infection. Furthermore, MAP3916c DNase promoted the colonization of MAP K-10, induced the formation of granulomas in the liver and small intestine and promoted the release of IL-1ß, IL-6 and TNF-α inflammatory cytokines during the infection of mice. These results indicated that MAP3916c is relevant to NETs escape and the pathogenicity of MAP. It also provides a basis for further study of the function of nuclease activity on the MAP immune evasion.


Deoxyribonucleases , Extracellular Traps , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animals , Deoxyribonucleases/genetics , Deoxyribonucleases/metabolism , Extracellular Traps/metabolism , Macrophages/microbiology , Mice , Mycobacterium avium subsp. paratuberculosis/enzymology , Mycobacterium avium subsp. paratuberculosis/pathogenicity , Paratuberculosis/microbiology , Virulence
6.
Front Microbiol ; 11: 2204, 2020.
Article En | MEDLINE | ID: mdl-33042041

Patatin-like phospholipases (PLPs) are important virulence factors of many pathogens. However, there are no prevailing studies regarding PLPs as a virulence factor of Mycobacterium tuberculosis (Mtb). Analysis of Rv3091, a putative protein of Mtb, shows that it belongs to the PLPs family. Here, we cloned and expressed the rv3091 gene in Mycobacterium smegmatis and, subsequently, conducted protein purification and characterization. We show that it possesses phospholipase A1, phospholipase A2, and lipase activity. We confirm the putative active site residues, namely, Ser214 and Asp407, using site directed mutagenesis. The Rv3091 is an extracellular protein that alters the colony morphology of M. smegmatis. The presence of Rv3091 enhances the intracellular survival capability of M. smegmatis in murine peritoneal macrophages. Additionally, it promotes M. smegmatis phagosomal escape from macrophages. Moreover, Rv3091 significantly increased the survival of M. smegmatis and aggravated lesions in C57BL/6 J murine lungs in vivo. Taken together, our results indicate that Rv3091 as an extracellular PLP that is critical to the pathogenicity of mycobacterium as it allows mycobacterium to utilize phospholipids for its growth and provides resistance to phagosome killing, resulting in its enhanced intracellular survival.

7.
Microb Pathog ; 142: 104055, 2020 Feb 11.
Article En | MEDLINE | ID: mdl-32058021

Serine protease is the virulence factor of many pathogens. However, there are no prevailing data available for serine protease as a virulence factor derived from Mycobacterium avium subsp. paratuberculosis (MAP). The MAP3292c gene from MAP, the predicted serine protease, was expressed in Escherichia coli and characterized by biochemical methods. MAP3292c protein efficiently hydrolyzed casein at optimal temperature and pH of 41 °C and 9.0, respectively. Furthermore, divalent metal ions of Ca2+ significantly promoted the protease activity of MAP3292c, and MAP3292c had autocleavage activity between serine 86 and asparagine 87. Site-directed mutagenesis studies showed that the serine 238 residue had catalytic roles in MAP3292c. Furthermore, a BALB/c mouse model confirmed that MAP3292c significantly promoted the survival of Mycobacterium smegmatis in vivo; caused damage to the liver, spleen, and lung; and promoted the release of inflammatory cytokines IL-1ß, IL-6, and TNF-α in mice. Finally, we confirmed that MAP3292c was relevant to mycobacterial pathogenicity.

...