Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters











Publication year range
1.
J Neurosci ; 43(26): 4755-4774, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37286354

ABSTRACT

NMDA receptors (NMDARs) are ionotropic glutamate receptors that play a key role in excitatory neurotransmission. The number and subtype of surface NMDARs are regulated at several levels, including their externalization, internalization, and lateral diffusion between the synaptic and extrasynaptic regions. Here, we used novel anti-GFP (green fluorescent protein) nanobodies conjugated to either the smallest commercially available quantum dot 525 (QD525) or the several nanometer larger (and thus brighter) QD605 (referred to as nanoGFP-QD525 and nanoGFP-QD605, respectively). Targeting the yellow fluorescent protein-tagged GluN1 subunit in rat hippocampal neurons, we compared these two probes to a previously established larger probe, a rabbit anti-GFP IgG together with a secondary IgG conjugated to QD605 (referred to as antiGFP-QD605). The nanoGFP-based probes allowed faster lateral diffusion of the NMDARs, with several-fold increased median values of the diffusion coefficient (D). Using thresholded tdTomato-Homer1c signals to mark synaptic regions, we found that the nanoprobe-based D values sharply increased at distances over 100 nm from the synaptic edge, while D values for antiGFP-QD605 probe remained unchanged up to a 400 nm distance. Using the nanoGFP-QD605 probe in hippocampal neurons expressing the GFP-GluN2A, GFP-GluN2B, or GFP-GluN3A subunits, we detected subunit-dependent differences in the synaptic localization of NMDARs, D value, synaptic residence time, and synaptic-extrasynaptic exchange rate. Finally, we confirmed the applicability of the nanoGFP-QD605 probe to study differences in the distribution of synaptic NMDARs by comparing to data obtained with nanoGFPs conjugated to organic fluorophores, using universal point accumulation imaging in nanoscale topography and direct stochastic optical reconstruction microscopy.SIGNIFICANCE STATEMENT Our study systematically compared the localization and mobility of surface NMDARs containing GFP-GluN2A, GFP-GluN2B, or GFP-GluN3A subunits expressed in rodent hippocampal neurons, using anti-green fluorescent protein (GFP) nanobodies conjugated to the quantum dot 605 (nanoGFP-QD605), as well as nanoGFP probes conjugated with small organic fluorophores. Our comprehensive analysis showed that the method used to delineate the synaptic region plays an important role in the study of synaptic and extrasynaptic pools of NMDARs. In addition, we showed that the nanoGFP-QD605 probe has optimal parameters for studying the mobility of NMDARs because of its high localization accuracy comparable to direct stochastic optical reconstruction microscopy and longer scan time compared with universal point accumulation imaging in nanoscale topography. The developed approaches are readily applicable to the study of any GFP-labeled membrane receptors expressed in mammalian neurons.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Single-Domain Antibodies , Rats , Animals , Rabbits , Receptors, N-Methyl-D-Aspartate/metabolism , Single-Domain Antibodies/metabolism , Synapses/physiology , Hippocampus/metabolism , Neurons/metabolism , Immunoglobulin G/metabolism , Mammals
2.
Front Mol Neurosci ; 11: 188, 2018.
Article in English | MEDLINE | ID: mdl-29915530

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) play critical roles in both excitatory neurotransmission and synaptic plasticity. NMDARs containing the nonconventional GluN3A subunit have different functional properties compared to receptors comprised of GluN1/GluN2 subunits. Previous studies showed that GluN1/GluN2 receptors are regulated by N-glycosylation; however, limited information is available regarding the role of N-glycosylation in GluN3A-containing NMDARs. Using a combination of microscopy, biochemistry, and electrophysiology in mammalian cell lines and rat hippocampal neurons, we found that two asparagine residues (N203 and N368) in the GluN1 subunit and three asparagine residues (N145, N264 and N275) in the GluN3A subunit are required for surface delivery of GluN3A-containing NMDARs. Furthermore, deglycosylation and lectin-based analysis revealed that GluN3A subunits contain extensively modified N-glycan structures, including hybrid/complex forms of N-glycans. We also found (either using a panel of inhibitors or by studying human fibroblasts derived from patients with a congenital disorder of glycosylation) that N-glycan remodeling is not required for the surface delivery of GluN3A-containing NMDARs. Finally, we found that the surface mobility of GluN3A-containing NMDARs in hippocampal neurons is increased following incubation with 1-deoxymannojirimycin (DMM, an inhibitor of the formation of the hybrid/complex forms of N-glycans) and decreased in the presence of specific lectins. These findings provide new insight regarding the mechanisms by which neurons can regulate NMDAR trafficking and function.

3.
Elife ; 62017 04 19.
Article in English | MEDLINE | ID: mdl-28422009

ABSTRACT

While axon fasciculation plays a key role in the development of neural networks, very little is known about its dynamics and the underlying biophysical mechanisms. In a model system composed of neurons grown ex vivo from explants of embryonic mouse olfactory epithelia, we observed that axons dynamically interact with each other through their shafts, leading to zippering and unzippering behavior that regulates their fasciculation. Taking advantage of this new preparation suitable for studying such interactions, we carried out a detailed biophysical analysis of zippering, occurring either spontaneously or induced by micromanipulations and pharmacological treatments. We show that zippering arises from the competition of axon-axon adhesion and mechanical tension in the axons, and provide the first quantification of the force of axon-axon adhesion. Furthermore, we introduce a biophysical model of the zippering dynamics, and we quantitatively relate the individual zipper properties to global characteristics of the developing axon network. Our study uncovers a new role of mechanical tension in neural development: the regulation of axon fasciculation.


Subject(s)
Axon Fasciculation , Axons/physiology , Biophysical Phenomena , Animals , Cell Adhesion , Cells, Cultured , Mice , Models, Biological , Olfactory Mucosa/embryology , Stress, Mechanical
4.
BMC Biophys ; 10: 2, 2017.
Article in English | MEDLINE | ID: mdl-28289540

ABSTRACT

BACKGROUND: The Biomembrane Force Probe is an approachable experimental technique commonly used for single-molecule force spectroscopy and experiments on biological interfaces. The technique operates in the range of forces from 0.1 pN to 1000 pN. Experiments are typically repeated many times, conditions are often not optimal, the captured video can be unstable and lose focus; this makes efficient analysis challenging, while out-of-the-box non-proprietary solutions are not freely available. RESULTS: This dedicated tool was developed to integrate and simplify the image processing and analysis of videomicroscopy recordings from BFP experiments. A novel processing feature, allowing the tracking of the pipette, was incorporated to address a limitation of preceding methods. Emphasis was placed on versatility and comprehensible user interface implemented in a graphical form. CONCLUSIONS: An integrated analytical tool was implemented to provide a faster, simpler and more convenient way to process and analyse BFP experiments.

5.
Clin Neurophysiol ; 128(4): 622-634, 2017 04.
Article in English | MEDLINE | ID: mdl-28231479

ABSTRACT

OBJECTIVE: To investigate the prevalence and the temporal structure of bilateral coherence in physiological (PT) and essential (ET) hand tremor. METHODS: Triaxial accelerometric recordings from both hands in 30 healthy subjects and 34 ET patients were analyzed using spectral coherence and wavelet coherence methods. In 12 additional healthy subjects, the relation between the hand tremor and the chest wall acceleration was evaluated using partial coherence analysis. RESULTS: The majority of both PT and ET subjects displayed significant bilateral coherence. While in PT, bilateral coherence was most frequently found in resting hand position (97% of subjects), in ET the prevalence was comparable for resting (54%) and postural (49%-57%) positions. In both PT and ET, epochs of strong coherence lasting several to a dozen seconds were separated by intervals of insignificant coherence. In PT, bilateral coherence at the main tremor frequency (8-12Hz) was coupled with the ballistocardiac rhythm. CONCLUSION: The oscillations of the two hands are intermittently synchronized in both PT and ET. We propose that in postural PT, bilateral coherence at the main tremor frequency arises from transient simultaneous entrainment of the left and right hand oscillations to ballistocardiac forcing. SIGNIFICANCE: Bilateral coherence of hand kinematics provides a sensitive measure of synchronizing influences on the left and right tremor oscillators.


Subject(s)
Essential Tremor/physiopathology , Functional Laterality , Tremor/physiopathology , Adult , Aged , Aged, 80 and over , Biomechanical Phenomena , Electromyography , Female , Hand/innervation , Hand/physiopathology , Humans , Male , Middle Aged , Movement
6.
Cell Calcium ; 59(6): 280-8, 2016 06.
Article in English | MEDLINE | ID: mdl-27072326

ABSTRACT

The magnocellular vasopressin (AVP) and oxytocin (OT) neurones exhibit specific electrophysiological behaviour, synthesise AVP and OT peptides and secrete them into the neurohypophysial system in response to various physiological stimulations. The activity of these neurones is regulated by the very same peptides released either somato-dendritically or when applied to supraoptic nucleus (SON) preparations in vitro. The AVP and OT, secreted somato-dendritically (i.e. in the SON proper) act through specific autoreceptors, induce distinct Ca(2+) signals and regulate cellular events. Here, we demonstrate that about 70% of freshly isolated individual SON neurones from the adult non-transgenic or transgenic rats bearing AVP (AVP-eGFP) or OT (OT-mRFP1) markers, produce distinct spontaneous [Ca(2+)]i oscillations. In the neurones identified (through specific fluorescence), about 80% of AVP neurones and about 60% of OT neurones exhibited these oscillations. Exposure to AVP triggered [Ca(2+)]i oscillations in silent AVP neurones, or modified the oscillatory pattern in spontaneously active cells. Hyper- and hypo-osmotic stimuli (325 or 275 mOsmol/l) respectively intensified or inhibited spontaneous [Ca(2+)]i dynamics. In rats dehydrated for 3 or 5days almost 90% of neurones displayed spontaneous [Ca(2+)]i oscillations. More than 80% of OT-mRFP1 neurones from 3 to 6-day-lactating rats were oscillatory vs. about 44% (OT-mRFP1 neurones) in virgins. Together, these results unveil for the first time that both AVP and OT neurones maintain, via Ca(2+) signals, their remarkable intrinsic in vivo physiological properties in an isolated condition.


Subject(s)
Calcium Signaling , Calcium/metabolism , Neurons/metabolism , Oxytocin/metabolism , Supraoptic Nucleus/metabolism , Vasopressins/metabolism , Animals , Dehydration , Green Fluorescent Proteins/metabolism , Male , Osmolar Concentration , Rats, Wistar
7.
Cell Calcium ; 59(6): 289-98, 2016 06.
Article in English | MEDLINE | ID: mdl-27052156

ABSTRACT

Isolated supraoptic neurones generate spontaneous [Ca(2+)]i oscillations in isolated conditions. Here we report in depth analysis of the contribution of plasmalemmal ion channels (Ca(2+), Na(+)), Na(+)/Ca(2+) exchanger (NCX), intracellular Ca(2+) release channels (InsP3Rs and RyRs), Ca(2+) storage organelles, plasma membrane Ca(2+) pump and intracellular signal transduction cascades into spontaneous Ca(2+) activity. While removal of extracellular Ca(2+) or incubation with non-specific voltage-gated Ca(2+) channel (VGCC) blocker Cd(2+) suppressed the oscillations, neither Ni(2+) nor TTA-P2, the T-type VGCC blockers, had an effect. Inhibitors of VGCC nicardipine, ω-conotoxin GVIA, ω-conotoxin MVIIC, ω-agatoxin IVA (for L-, N-, P and P/Q-type channels, respectively) did not affect [Ca(2+)]i oscillations. In contrast, a specific R-type VGCC blocker SNX-482 attenuated [Ca(2+)]i oscillations. Incubation with TTX had no effect, whereas removal of the extracellular Na(+) or application of an inhibitor of the reverse operation mode of Na(+)/Ca(2+) exchanger KB-R7943 blocked the oscillations. The mitochondrial uncoupler CCCP irreversibly blocked spontaneous [Ca(2+)]i activity. Exposure of neurones to Ca(2+) mobilisers (thapsigargin, cyclopiazonic acid, caffeine and ryanodine); 4-aminopyridine (A-type K(+) current blocker); phospholipase C and adenylyl cyclase pathways blockers U-73122, Rp-cAMP, SQ-22536 and H-89 had no effect. Oscillations were blocked by GABA, but not by glutamate, apamin or dynorphin. In conclusion, spontaneous oscillations in magnocellular neurones are mediated by a concerted action of R-type Ca(2+) channels and the NCX fluctuating between forward and reverse modes.


Subject(s)
Calcium Channels, R-Type/metabolism , Calcium Signaling , Calcium/metabolism , Neurons/metabolism , Sodium-Calcium Exchanger/metabolism , Supraoptic Nucleus/metabolism , Adenylyl Cyclases/metabolism , Animals , Biological Transport , Intracellular Space/metabolism , Ion Channel Gating , Male , Neurotransmitter Agents/metabolism , Potassium Channels/metabolism , Rats, Wistar , Second Messenger Systems , Sodium/metabolism , Sodium Channels/metabolism , Type C Phospholipases/metabolism
8.
Biosystems ; 136: 66-72, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26296775

ABSTRACT

Signal transduction in biological cells is effected by signaling pathways that typically include multiple feedback loops. Here we analyze information transfer through a prototypical signaling module with biochemical feedback. The module switches stochastically between an inactive and active state; the input to the module governs the activation rate while the output (i.e., the product concentration) perturbs the inactivation rate. Using a novel perturbative approach, we compute the rate with which information about the input is gained from observation of the output. We obtain an explicit analytical result valid to first order in feedback strength and to second order in the strength of input. The total information gained during an extended time interval is found to depend on the feedback strength only through the total number of activation/inactivation events.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Information Storage and Retrieval/methods , Ion Channel Gating/physiology , Models, Biological , Signal Transduction/physiology , Animals , Computer Simulation , Feedback, Physiological/physiology , Humans
9.
Sci Rep ; 5: 10935, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26086919

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) mediate synaptic plasticity, and their dysfunction is implicated in multiple brain disorders. NMDARs can be allosterically modulated by numerous compounds, including endogenous neurosteroid pregnanolone sulfate. Here, we identify the molecular basis of the use-dependent and voltage-independent inhibitory effect of neurosteroids on NMDAR responses. The site of action is located at the extracellular vestibule of the receptor's ion channel pore and is accessible after receptor activation. Mutations in the extracellular vestibule in the SYTANLAAF motif disrupt the inhibitory effect of negatively charged steroids. In contrast, positively charged steroids inhibit mutated NMDAR responses in a voltage-dependent manner. These results, in combination with molecular modeling, characterize structure details of the open configuration of the NMDAR channel. Our results provide a unique opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with dysfunction of the glutamate system.


Subject(s)
Mutation , Pregnanolone , Receptors, N-Methyl-D-Aspartate , Vestibule, Labyrinth , Amino Acid Motifs , Humans , Pregnanolone/chemistry , Pregnanolone/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Vestibule, Labyrinth/chemistry , Vestibule, Labyrinth/metabolism
10.
PLoS One ; 10(4): e0124475, 2015.
Article in English | MEDLINE | ID: mdl-25875378

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0116813.].

11.
PLoS One ; 10(2): e0116813, 2015.
Article in English | MEDLINE | ID: mdl-25710715

ABSTRACT

Flies achieve supreme flight maneuverability through a small set of miniscule steering muscles attached to the wing base. The fast flight maneuvers arise from precisely timed activation of the steering muscles and the resulting subtle modulation of the wing stroke. In addition, slower modulation of wing kinematics arises from changes in the activity of indirect flight muscles in the thorax. We investigated if these modulations can be described as a superposition of a limited number of elementary deformations of the wing stroke that are under independent physiological control. Using a high-speed computer vision system, we recorded the wing motion of tethered flying fruit flies for up to 12,000 consecutive wing strokes at a sampling rate of 6250 Hz. We then decomposed the joint motion pattern of both wings into components that had the minimal mutual information (a measure of statistical dependence). In 100 flight segments measured from 10 individual flies, we identified 7 distinct types of frequently occurring least-dependent components, each defining a kinematic pattern (a specific deformation of the wing stroke and the sequence of its activation from cycle to cycle). Two of these stroke deformations can be associated with the control of yaw torque and total flight force, respectively. A third deformation involves a change in the downstroke-to-upstroke duration ratio, which is expected to alter the pitch torque. A fourth kinematic pattern consists in the alteration of stroke amplitude with a period of 2 wingbeat cycles, extending for dozens of cycles. Our analysis indicates that these four elementary kinematic patterns can be activated mutually independently, and occur both in isolation and in linear superposition. The results strengthen the available evidence for independent control of yaw torque, pitch torque, and total flight force. Our computational method facilitates systematic identification of novel patterns in large kinematic datasets.


Subject(s)
Drosophila melanogaster/physiology , Movement , Wings, Animal/physiology , Animals , Biomechanical Phenomena , Computer Simulation
12.
J R Soc Interface ; 10(80): 20121013, 2013 Mar 06.
Article in English | MEDLINE | ID: mdl-23282849

ABSTRACT

In many animals, rhythmic motor activity is governed by neural limit cycle oscillations under the control of sensory feedback. In the fruit fly Drosophila melanogaster, the wingbeat rhythm is generated myogenically by stretch-activated muscles and hence independently from direct neural input. In this study, we explored if generation and cycle-by-cycle control of Drosophila's wingbeat are functionally separated, or if the steering muscles instead couple into the myogenic rhythm as a weak forcing of a limit cycle oscillator. We behaviourally tested tethered flying flies for characteristic properties of limit cycle oscillators. To this end, we mechanically stimulated the fly's 'gyroscopic' organs, the halteres, and determined the phase relationship between the wing motion and stimulus. The flies synchronized with the stimulus for specific ranges of stimulus amplitude and frequency, revealing the characteristic Arnol'd tongues of a forced limit cycle oscillator. Rapid periodic modulation of the wingbeat frequency prior to locking demonstrates the involvement of the fast steering muscles in the observed control of the wingbeat frequency. We propose that the mechanical forcing of a myogenic limit cycle oscillator permits flies to avoid the comparatively slow control based on a neural central pattern generator.


Subject(s)
Biological Clocks/physiology , Flight, Animal/physiology , Models, Biological , Muscles/physiology , Wings, Animal/physiology , Animals , Drosophila melanogaster
13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(2 Pt 1): 021908, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21929021

ABSTRACT

We extend a recently proposed model [Chaudhuri et al., Europhys. Lett. 87, 20003 (2009)] aiming to describe the formation of fascicles of axons during neural development. The growing axons are represented as paths of interacting directed random walkers in two spatial dimensions. To mimic turnover of axons, whole paths are removed and new walkers are injected with specified rates. In the simplest version of the model, we use strongly adhesive short-range inter-axon interactions that are identical for all pairs of axons. We generalize the model to adhesive interactions of finite strengths and to multiple types of axons with type-specific interactions. The dynamic steady state is characterized by the position-dependent distribution of fascicle size and fascicle composition. With distance in the direction of axon growth, the mean fascicle size and emergent time scales grow monotonically, while the degree of sorting of fascicles by axon type has a maximum at a finite distance. To understand the emergence of slow time scales, we develop an analytical framework to analyze the interaction between neighboring fascicles.


Subject(s)
Axons/metabolism , Models, Biological , Animals , Mice , Monte Carlo Method , Olfactory Bulb/cytology , Sensory Receptor Cells/cytology , Time Factors
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(2 Pt 1): 021904, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17930062

ABSTRACT

We study the stochastic kinetics of a signaling module consisting of a two-state stochastic point process with negative feedback. In the active state, a product is synthesized which increases the active-to-inactive transition rate of the process. We analyze this simple autoregulatory module using a path-integral technique based on the temporal statistics of state flips of the process. We develop a systematic framework to calculate averages, autocorrelations, and response functions by treating the feedback as a weak perturbation. Explicit analytical results are obtained to first order in the feedback strength. Monte Carlo simulations are performed to test the analytical results in the weak feedback limit and to investigate the strong feedback regime. We conclude by relating some of our results to experimental observations in the olfactory and visual sensory systems.


Subject(s)
Biophysics/methods , Feedback, Physiological , Animals , Biology/methods , Chemistry, Physical/methods , Computer Simulation , Kinetics , Models, Biological , Models, Statistical , Models, Theoretical , Monte Carlo Method , Neurons/metabolism , Olfactory Pathways/metabolism , Signal Transduction , Stochastic Processes
15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(3 Pt 2A): 036134, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15903520

ABSTRACT

We investigate the interplay of recurrence and noise in neural networks trained to categorize spatial patterns of neural activity. We develop the following procedure to demonstrate how, in the presence of noise, the introduction of recurrence permits to significantly extend and homogenize the operating range of a feed-forward neural network. We first train a two-level perceptron in the absence of noise. Following training, we identify the input and output units of the feed-forward network, and thus convert it into a two-layer recurrent network. We show that the performance of the reconnected network has features reminiscent of nondynamic stochastic resonance: the addition of noise enables the network to correctly categorize stimuli of subthreshold strength, with optimal noise magnitude significantly exceeding the stimulus strength. We characterize the dynamics leading to this effect and contrast it to the behavior of a more simple associative memory network in which noise-mediated categorization fails.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(3 Pt 1): 031711, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12366140

ABSTRACT

The rheological properties of cholesteric liquid crystals containing networks of defects are investigated. A network of linear defects of the "oily-streak" type is stabilized when colloidal particles are dispersed into the cholesteric liquid crystals. This network converts the rheological response of a presheared cholesteric liquid crystal from fluidlike to solidlike and leads to the formation of a "defect-mediated" solid. The frequency-dependent complex shear modulus G*(omega) is measured, for samples with and without inclusions, in both the linear and nonlinear viscoelastic regimes. The linear elastic response mediated by the defect network is discussed in terms of a model analogous to the theories of rubber elasticity. All our data for G*(omega) are fitted to a simplified theoretical form, and the values and variations of the fitting parameters, in the various regimes investigated, are discussed in terms of the properties of defect structure present in the samples. Similar rheological properties are expected to arise from particle-stabilized oily-streak defect networks in layered systems such as smectic-A and lyotropic L(alpha) phases.

17.
Neuron ; 35(4): 681-96, 2002 Aug 15.
Article in English | MEDLINE | ID: mdl-12194868

ABSTRACT

An olfactory sensory neuron (OSN) expresses selectively one member from a repertoire of approximately 1000 odorant receptor (OR) genes and projects its axon to a specific glomerulus in the olfactory bulb. Both processes are here recapitulated by MOR23 and M71 OR minigenes, introduced into mice. Minigenes of 9 kb and as short as 2.2 kb are selectively expressed by neurons that do not coexpress the endogenous gene but coproject their axons to the same glomeruli. Deletion of a 395 bp upstream region in the MOR23 minigene abolishes expression. In this region we recognize sequence motifs conserved in many OR genes. Transgenic lines expressing the OR in ectopic epithelial zones form ectopic glomeruli, which also receive input from OSNs expressing the cognate endogenous receptor. This suggests a recruitment through homotypic interactions between OSNs expressing the same OR.


Subject(s)
Cell Differentiation/genetics , Gene Expression Regulation, Developmental/genetics , Growth Cones/metabolism , Olfactory Bulb/abnormalities , Olfactory Pathways/abnormalities , Olfactory Receptor Neurons/abnormalities , Receptors, Odorant/genetics , Animals , Base Sequence/genetics , Binding Sites/genetics , Gene Deletion , Genes, Reporter/genetics , Growth Cones/ultrastructure , Homeodomain Proteins/genetics , Introns/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Sequence Data , Olfactory Bulb/cytology , Olfactory Bulb/metabolism , Olfactory Pathways/cytology , Olfactory Pathways/metabolism , Olfactory Receptor Neurons/cytology , Olfactory Receptor Neurons/metabolism , Transgenes/genetics
18.
Genome Res ; 12(2): 298-308, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11827949

ABSTRACT

The comparison of homologous noncoding DNA for organisms a suitable evolutionary distance apart is a powerful tool for the identification of cis regulatory elements for transcription and translation and for the study of how they assemble into functional modules. We have fit the three parameters of an affine global probabilistic alignment algorithm to establish the background mutation rate of noncoding sequence between E. coli and a series of gamma proteobacteria ranging from Salmonella to Vibrio. The lower bound we find to the neutral mutation rate is sufficiently high, even for Salmonella, that most of the conservation of noncoding sequence is indicative of selective pressures rather than of insufficient time to evolve. We then use a local version of the alignment algorithm combined with our inferred background mutation rate to assign a significance to the degree of local sequence conservation between orthologous genes, and thereby deduce a probability profile for the upstream regulatory region of all E. coli protein-coding genes. We recover 75%-85% (depending on significance level) of all regulatory sites from a standard compilation for E. coli, and 66%-85% of sigma sites. We also trace the evolution of known regulatory sites and the groups associated with a given transcription factor. Furthermore, we find that approximately one-third of paralogous gene pairs in E. coli have a significant degree of correlation in their regulatory sequence. Finally, we demonstrate an inverse correlation between the rate of evolution of transcription factors and the number of genes they regulate. Our predictions are available at http://www.physics.rockefeller.edu/([tilde-see text])siggia.


Subject(s)
DNA, Bacterial/genetics , Evolution, Molecular , Gammaproteobacteria/genetics , Regulatory Sequences, Nucleic Acid/genetics , Algorithms , Binding Sites/genetics , Genes, Bacterial , Regulatory Sequences, Nucleic Acid/physiology , Species Specificity , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL