Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Croat Med J ; 65(3): 268-287, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38868973

ABSTRACT

This review evaluates the current landscape and future directions of regenerative medicine for knee cartilage repair, with a particular focus on tissue engineering strategies. In this context, scaffold-based approaches have emerged as promising solutions for cartilage regeneration. Synthetic scaffolds, while offering superior mechanical properties, often lack the biological cues necessary for effective tissue integration. Natural scaffolds, though biocompatible and biodegradable, frequently suffer from inadequate mechanical strength. Hybrid scaffolds, combining elements of both synthetic and natural materials, present a balanced approach, enhancing both mechanical support and biological functionality. Advances in decellularized extracellular matrix scaffolds have shown potential in promoting cell infiltration and integration with native tissues. Additionally, bioprinting technologies have enabled the creation of complex, bioactive scaffolds that closely mimic the zonal organization of native cartilage, providing an optimal environment for cell growth and differentiation. The review also explores the potential of gene therapy and gene editing techniques, including CRISPR-Cas9, to enhance cartilage repair by targeting specific genetic pathways involved in tissue regeneration. The integration of these advanced therapies with tissue engineering approaches holds promise for developing personalized and durable treatments for knee cartilage injuries and osteoarthritis. In conclusion, this review underscores the importance of continued multidisciplinary collaboration to advance these innovative therapies from bench to bedside and improve outcomes for patients with knee cartilage damage.


Subject(s)
Cartilage, Articular , Regenerative Medicine , Tissue Engineering , Tissue Scaffolds , Humans , Tissue Engineering/methods , Regenerative Medicine/trends , Regenerative Medicine/methods , Cartilage, Articular/injuries , Cartilage, Articular/physiology , Knee Injuries/therapy , Knee Injuries/surgery , Genetic Therapy/trends , Genetic Therapy/methods , Regeneration
2.
Stem Cell Res Ther ; 14(1): 368, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38093301

ABSTRACT

BACKGROUND: Limbal stem cells (LSCs) are crucial for the regeneration of the corneal epithelium in patients with limbal stem cell deficiency (LSCD). Thus, LSCs during cultivation in vitro should be in highly homogeneous amounts, while potency and expression of stemness without tumorigenesis would be desirable. Therefore, further characterization and safety evaluation of engineered limbal grafts is required to provide safe and high-quality therapeutic applications. METHODS: After in vitro expansion, LSCs undergo laboratory characterization in a single-cell suspension, cell culture, and in limbal grafts before transplantation. Using a clinically applicable protocol, the data collected on LSCs at passage 1 were summarized, including: identity (cell size, morphology); potency (yield, viability, population doubling time, colony-forming efficiency); expression of putative stem cell markers through flow cytometry, immunofluorescence, and immunohistochemistry. Then, mitotic chromosome stability and normal mitotic outcomes were explored by using live-cell imaging. Finally, impurities, bacterial endotoxins and sterility were determined. RESULTS: Expression of the stemness marker p63 in single-cell suspension and in cell culture showed high values by different methods. Limbal grafts showed p63-positive cells (78.7 ± 9.4%), Ki67 proliferation (41.7 ± 15.9%), while CK3 was negative. Impurity with 3T3 feeder cells and endotoxins was minimized. We presented mitotic spindles with a length of 11.40 ± 0.54 m and a spindle width of 8.05 ± 0.55 m as new characterization in LSC culture. Additionally, live-cell imaging of LSCs (n = 873) was performed, and only a small fraction < 2.5% of aberrant interphase cells was observed; 2.12 ± 2.10% of mitotic spindles exhibited a multipolar phenotype during metaphase, and 3.84 ± 3.77% of anaphase cells had a DNA signal present within the spindle midzone, indicating a chromosome bridge or lagging chromosome phenotype. CONCLUSION: This manuscript provides, for the first time, detailed characterization of the parameters of fidelity of the mitotic process and mitotic spindle morphologies of LSCs used in a direct clinical application. Our data show that p63-positive CK3-negative LSCs grown in vitro for clinical purposes undergo mitotic processes with extremely high fidelity, suggesting high karyotype stability. This finding confirms LSCs as a high-quality and safe therapy for eye regeneration in humans.


Subject(s)
Epithelium, Corneal , Limbus Corneae , Humans , Stem Cells , Limbal Stem Cells , Spindle Apparatus , Endotoxins/metabolism
3.
Article in English | MEDLINE | ID: mdl-35840178

ABSTRACT

PURPOSE: Dilated cardiomyopathy (DCM) is a primary disorder of the cardiac muscle, characterised by dilatation of the left ventricle and contractile dysfunction. About 50% of DCM cases can be attributed to monogenic causes, whereas the aetiology in the remaining patients remains unexplained. METHODS: We report a family with two brothers affected by severe DCM with onset in the adolescent period. Using exome sequencing, we identified a homozygous premature termination variant in the MYZAP gene in both affected sibs. MYZAP encodes for myocardial zonula adherens protein - a conserved cardiac protein in the intercalated disc structure of cardiomyocytes. RESULTS: The effect of the variant was demonstrated by light and electron microscopy of the heart muscle and immunohistochemical and Western blot analysis of MYZAP protein in the heart tissue of the proband. Functional characterization using patient-derived induced pluripotent stem cell cardiomyocytes revealed significantly lower force and longer time to peak contraction and relaxation consistent with severe contractile dysfunction. CONCLUSION: We provide independent support for the role of biallelic loss-of-function MYZAP variants in dilated cardiomyopathy. This report extends the spectrum of cardiac disease associated with dysfunction of cardiac intercalated disc junction and sheds light on the mechanisms leading to DCM.

4.
Eur J Paediatr Neurol ; 32: 66-72, 2021 May.
Article in English | MEDLINE | ID: mdl-33836415

ABSTRACT

Gaucher disease type 3 (GD3) is a severely debilitating disorder characterized by multisystemic manifestations and neurodegeneration. Enzyme replacement therapy alleviates visceral signs and symptoms but has no effect on neurological features. Ambroxol has been suggested as an enzyme enhancement agent. Some studies have confirmed its effectiveness in preventing the progression of neurological manifestations of neuronopathic Gaucher disease. In this study, we report two GD3 siblings in whom ambroxol combined with enzyme replacement therapy was initiated at different stages of the disease. We demonstrate the enzyme enhancement effect of ambroxol on L444P/H225Q;D409H glucocerebrosidase activity through results of fibroblast studies and long-term clinical outcomes of the two patients. The sibling diagnosed at the age of four-and-a-half years with significant neurological involvement manifested relatively rapid improvement on ambroxol treatment, followed by stabilization of further course. The younger sibling, in whom the treatment was started at seven weeks, displayed attention deficit and low average cognitive functioning at the age of seven years, but did not manifest other neurological symptoms. The difference in neurological outcomes indicates that ambroxol delayed or even halted the evolution of neurological manifestations in the younger sibling. This observation suggests that early initiation of ambroxol treatment may arrest neurological involvement in some GD3 patients.


Subject(s)
Ambroxol/administration & dosage , Enzyme Replacement Therapy/methods , Gaucher Disease/drug therapy , Secondary Prevention , Child , Child, Preschool , Female , Glucosylceramidase/deficiency , Glucosylceramidase/therapeutic use , Humans , Infant , Male , Siblings
5.
Clin Mass Spectrom ; 12: 1-6, 2019 Apr.
Article in English | MEDLINE | ID: mdl-34841073

ABSTRACT

Tyrosinemia type 1 is an autosomal recessive aminoacidopathy caused by fumarylacetoacetate hydrolase (FAH) deficiency. Consequently, tyrosine and its metabolites accumulate, resulting in liver and kidney toxicity. Symptoms of the disease usually manifest after three weeks of life and include vomiting, failure to thrive, hepatomegaly, jaundice, bleeding diathesis, rickets and renal tubular dysfunction. Untreated, the disease eventually progresses to liver or kidney failure and generally results in a fatal outcome. Expedient diagnosis is critical because an early start of treatment can increase the likelihood of a positive outcome. Here, we report on a male newborn with a family history positive for tyrosinemia type 1 who was subjected to a metabolic work-up immediately after birth. Amino acids were quantified by tandem mass spectrometry coupled with ultra performance liquid chromatography. Urinary organic acids were analyzed on capillary gas chromatography coupled with mass spectrometry. DNA analysis of the FAH gene was performed by Sanger sequencing. On the first day of life, the patient's plasma amino acids showed an increased tyrosine concentration, while urine organic acids detected succinylacetone, a tyrosine metabolite specific for tyrosinemia type 1. The patient's DNA analysis revealed homozygosity of the c.554-1G > T mutation in the FAH gene, which was consistent with the diagnosis. Nitisinone treatment, combined with a dietary restriction of tyrosine and phenylalanine, was introduced immediately. Regular visits and measurement of amino acid concentrations, which enables therapy adjustment and treatment efficiency monitoring in patients with tyrosinemia type 1, has continued over the past 4+ years, and is expected to continue.

6.
Biochem Med (Zagreb) ; 28(3): 030801, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30429681

ABSTRACT

Gyrate atrophy (GA) of the choroid and retina is a rare autosomal recessive disorder that occurs due to deficiency of the mitochondrial enzyme ornithine aminotransferase (OAT). Hyperornithinemia causes degeneration of the retina with symptoms like myopia, reduced night vision and progressive vision loss. Our patient is a 10-year-old girl with impaired vision and strabismus. As part of the metabolic work-up, plasma amino acid analysis revealed significantly increased concentration of ornithine (1039 µmol/L; reference interval 20 - 155 µmol/L). Molecular genetic analysis revealed homozygous mutation in exon 7 of the OAT gene that has not been reported previously (c.868_870delCTT p.(Leu290del)). This in frame deletion was predicted to be deleterious by in silico software analysis. Our patient was treated with pyridoxine (vitamin B6 in a dose of 2 x 100 mg/day), low-protein diet (0.6 g/kg/day) and L-lysine supplementation which resulted in a significant reduction in plasma ornithine concentrations to 53% of the initial concentration and the ophthalmologic findings showed significant improvement. We conclude that low protein diet and lysine supplementation can lead to long-term reduction in plasma ornithine concentrations and, if started at an early age, notably slow the progression of retinal function loss in patients with GA. The effect of therapy can be reliably monitored by periodical measurement of plasma ornithine concentration. To our knowledge, this is the first report of OAT deficiency in Croatia.


Subject(s)
Gyrate Atrophy/genetics , Mutation , Ornithine-Oxo-Acid Transaminase/genetics , Blood Cell Count , Child , Croatia , Female , Fluorescein Angiography , Follow-Up Studies , Gyrate Atrophy/blood , Gyrate Atrophy/diagnostic imaging , Gyrate Atrophy/enzymology , Humans , Tomography, Optical Coherence
7.
J Pediatr Endocrinol Metab ; 31(10): 1155-1159, 2018 Oct 25.
Article in English | MEDLINE | ID: mdl-30243016

ABSTRACT

Background Infantile free sialic acid storage disease (ISSD) is a severe multisystemic disorder characterized by the accumulation of free sialic acid in lysosomes. Case presentation The patient presented prenatally with fetal ascites and large scrotal hernias, without pleural or pericardial effusion. During the infantile period, he was diagnosed with permanent isolated immunoglobulin G (IgG) hypogammaglobulinemia, which thus far has rarely been associated with ISSD. The analysis of the SLC17A5 gene revealed a novel homozygous 94 bp gene deletion. We further provide a detailed description of pre- and postnatal clinical and radiographic findings. Conclusions Fetal ascites could be the first sign of several lysosomal storage diseases (LSDs), including ISSD. The analysis of LSD gene panels is an effective approach to diagnosis in the case of non-specific symptoms and when specific biochemical tests are not easily available.


Subject(s)
Agammaglobulinemia/complications , Mutation , Organic Anion Transporters/genetics , Sialic Acid Storage Disease/complications , Symporters/genetics , Agammaglobulinemia/blood , Agammaglobulinemia/diagnostic imaging , Agammaglobulinemia/genetics , Brain/diagnostic imaging , Humans , Infant , Magnetic Resonance Imaging , Male , Sialic Acid Storage Disease/blood , Sialic Acid Storage Disease/diagnostic imaging , Sialic Acid Storage Disease/genetics , Ultrasonography
8.
Immunol Lett ; 91(1): 39-47, 2004 Jan 30.
Article in English | MEDLINE | ID: mdl-14757368

ABSTRACT

Keratinocytes actively participate in immune response and inflammation by secreting cytokines and chemokines. Membrane-bound peptidases serve as negative loop in controlling concentration of peptide signalling molecules. Recently, they have also been proposed as additional mechanism of cell-to-cell interaction and as signalling molecules. In this study, we examined expression of two membrane-bound peptidases: aminopeptidase N (APN; EC 3.4.11.2; CD13) and neutral endopeptidase (NEP; EC 3.4.24.11; CD10) on nonstimulated cultured human keratinocytes obtained from healthy skin. Membrane expression of CD13 and CD10 was analysed by FACS and fluorescent microscope. Functional properties of CD13 and CD10 were examined by testing their enzymatic activity towards selective substrates. The data were compared to those obtained on cultured nonstimulated human skin fibroblasts expressing both CD13/APN and CD10/NEP. Approximately one-third (i.e. 31.7+/-2.8%; n=3) of cultured keratinocyte express CD13 as compared to fibroblasts which are 100% CD13(+) (n=3). Density of CD13 on keratinocytes is several times lower than on fibroblasts. Membrane CD13 expression on keratinocytes was associated with significant enzyme activity, which on the basis of substrate (L-Ala-betaNA) and inhibitor (bestatin, actinonin) selectivity could be ascribed to aminopeptidase N. Kinetic parameter V(max) revealed lower APN activity expressed on keratinocytes than on fibroblasts (V(max)=1.49+/-0.08 microM/60 min/5 x 10(4) cells for keratinocytes, n=3 versus V(max)=4.09+/-0.76 microM/60 min/5 x 10(4) cells for fibroblasts, n=3). Likewise, K(m) value of APN on keratinocytes was lower as compared to fibroblasts (K(m)=0.307+/-0.090 mM for keratinocytes, n=3 versus K(m)=0.766+/-0.065 mM for fibroblasts, n=3). CD13 demonstrated on cultured keratinocytes, is at least partly due to its constitutive expression since it was also found on freshly prepared epidermal skin cells. Inhibitors of APN, actinonin, bestatin and substance-P, as well as the APN blocking antibody WM-15, decreased keratinocytes growth. In contrast to membrane CD13 associated with APN enzyme activity, neither membrane CD10, nor its enzyme (NEP) activity could be found on the same keratinocyte samples. In conclusion, functional CD13, associated with APN activity, was found on about one third of cultured, non-stimulated keratinocytes, whereas no CD10/NEP was found on the same keratinocyte samples. Role of APN in regulation of keratinocyte growth is suggested, as its inhibition resulted in decreased keratinocyte growth.


Subject(s)
CD13 Antigens/genetics , Keratinocytes/enzymology , Neprilysin/genetics , CD13 Antigens/antagonists & inhibitors , CD13 Antigens/biosynthesis , Cell Membrane/enzymology , Flow Cytometry , Fluorescent Antibody Technique , Humans , Neprilysin/biosynthesis , Skin/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...