Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.327
1.
ACS Omega ; 9(17): 19525-19535, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38708215

The combustion of conventional methane-hydrogen mixtures is associated with challenges such as combustion instability and excessive pollutant emissions. This study explores the advantages of porous media, which include a wide operating range, enhanced combustion stability, high combustion efficiency, and reduced pollutant emissions. We conducted numerical transient simulations to investigate methane-hydrogen combustion within a porous media, focusing on a cylindrical double-layer porous burner geometry. The research analyzes the temperature, combustion rate, and diffusion characteristics of the methane-hydrogen-precipitated gas flame within the porous media. Additionally, it examines variations in the position and width of the high-temperature region along with changes in carbon and nitrogen emissions. The computations were carried out for different hydrogen blending ratios over the time interval of 0-0.4 s. The results unveil the transient combustion characteristics of hydrogen-enriched methane within a porous media, offering valuable insights for the subsequent optimization of porous media burners (PMB). This study provides a theoretical foundation for enhancing the efficiency and environmental performance of combustion processes involving methane-hydrogen mixtures.

2.
Sci Rep ; 14(1): 10822, 2024 05 11.
Article En | MEDLINE | ID: mdl-38734742

With high prevalence and substantial mortality, metabolic dysfunction-associated steatotic liver disease and chronic obstructive pulmonary disease (COPD) are significant public health concerns. Utilizing a large, population-based dataset from the National Health and Nutrition Examination Survey, our study probes the relationship between COPD prevalence and hepatic steatosis and fibrosis, as measured by Vibration-Controlled Transient Elastography. We analyzed data from 693 individuals with COPD and 7229 without. Through weighted multivariate logistic regression analysis, a restricted cubic spline curve, and threshold effect analysis, we investigated the correlation between the severity of hepatic steatosis and fibrosis and the presence of COPD. Our findings revealed a positive correlation between the controlled attenuation parameter (CAP) and COPD prevalence [OR = 1.03 (95% CI 1.01, 1.05)], even after multivariate adjustment. Furthermore, we observed a U-shaped association between CAP and COPD, where the inflection point, CAP value of 264.85 dB/m, corresponded to the lowest COPD prevalence. Our study emphasizes a substantial and complex link between hepatic steatosis and COPD. These findings urge healthcare professionals to factor liver health into COPD management and prompt further exploration into the underlying mechanisms. This could pave the way for the development of improved prevention and treatment strategies.


Fatty Liver , Liver Cirrhosis , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/pathology , Male , Female , Liver Cirrhosis/complications , Liver Cirrhosis/epidemiology , Liver Cirrhosis/pathology , Middle Aged , Fatty Liver/complications , Fatty Liver/epidemiology , Fatty Liver/pathology , Prevalence , Aged , Nutrition Surveys , Elasticity Imaging Techniques , Adult
3.
J Food Sci ; 2024 May 16.
Article En | MEDLINE | ID: mdl-38752388

The increasing concerns about health have led to a growing demand for high-quality fried foods. The potential uses of Ligustrum robustum (Rxob.) Blume, a traditional tea in China, as natural additives to enhance the quality of starchy food during frying was studied. Results indicated that L. robustum polyphenols extract (LREs) could improve the quality of fried starchy food, according to the tests of color, moisture content, oil content, texture property, and volatile flavor. The in vitro digestion results demonstrated that LRE reduced the final glucose content from 11.35 ± 0.17 to 10.80 ± 0.70 mmol/L and increased the phenolic content of fried starch foods from 1.23 ± 0.04 to 3.76 ± 0.14 mg/g. The appearance and polarizing microscopy results showed that LRE promoted large starch bulges on the surface of fried starchy foods. Meanwhile, X-ray diffraction results showed that LRE increased the intensity of characteristic diffraction peak of fried starch with a range of 21.8%-28%, and Fourier transform infrared results showed that LRE reduced the damage to short-range order structure of starch caused by the frying process. In addition, LRE increased the aggregation of starch granules according to the SEM observation and decreased the enthalpy of starch gelatinization based on the differential scanning calorimetry results. The present results suggest that LREs have the potential to be utilized as a natural additive for regulating the quality of fried starchy food in food industries. PRACTICAL APPLICATION: The enhancement of L. robustum polyphenols on the quality of starchy food during frying was found, and its mechanisms were also explored. This work indicated that L. robustum might be used as a novel economic natural additive for producing high-quality fried foods.

4.
Phytochem Anal ; 2024 May 21.
Article En | MEDLINE | ID: mdl-38772558

INTRODUCTION: Croton crassifolius Geisel. (CCG) is a traditional Chinese medicine widely used in South China. It has various pharmacological effects and is often used in treating rheumatoid arthritis and gastric and duodenal ulcers. However, the chemical characteristics and its effective constituents are still scarcely studied. OBJECTIVE: To determine the phytochemical profile of the CCG extract and to investigate the chemical characteristics of terpenoids extracted from rat plasma following oral administration of CCG extract based on UPLC-Q/TOF-MS. Moreover, six terpenoids in CCG were quantified, and in vivo pharmacokinetic behavior after oral CCG extract was further explored. RESULTS: In total, 56 terpenoids were tentatively identified in the CCG extract and 16 terpenoids were detected in rat plasma after oral CCG extract. In addition, the contents of six terpenoids in CCG were clarified. The plasma quantification method of six terpenoids was further established, validated, and confirmed to have good sensitivity and specificity. The six analytes exhibited excellent linearity in respective concentration ranges (r ≥ 0.998). The intra-day and inter-day precisions relative standard deviation (RSD, %) were less than 11.27%, and the accuracies ranged from -7.06% to 9.91%. Stability, extraction recovery, and matrix effect in plasma were within the required limits (RSD < 15%). CONCLUSION: A total of 56 terpenoids were identified in CCG and 16 prototype components in plasma after oral CCG. The validated quantitative method was successfully applied to the simultaneous determination of six major terpenoids in plasma. The pharmacokinetic parameters are clarified, which can guide the clinical application of CCG.

5.
Vet J ; 305: 106131, 2024 May 17.
Article En | MEDLINE | ID: mdl-38763403

The pharyngeal tonsil, located in the nasopharynx, can effectively defend against pathogens invading the body from the upper respiratory tract and play a crucial role in mucosal immunity of the respiratory tract. Immunoglobulin A (IgA) and Immunoglobulin G (IgG) serve as key effector molecules in mucosal immunity, exhibiting multiple immune functions. This study aimed to investigate the distribution patterns and age-related alterations of IgA and IgG antibody-secreting cells (ASCs) in the pharyngeal tonsils of Bactrian camels. Twelve Alashan Bactrian camels were categorized into four age groups: young (1-2 years, n=3), pubertal (3-5 years, n=3), middle-aged (6-16 years, n=3) and old (17-20 years, n=3). The distribution patterns of IgA and IgG ASCs in the pharyngeal tonsils of Bactrian camels of different ages were meticulously observed, analyzed and compared using immunohistochemical and statistical methods. The results revealed that IgA ASCs in the pharyngeal tonsils of all age groups were primarily clustered or diffusely distributed in the reticular epithelium and its subepithelial regions (region A) and around the glands (region C), scattered in the subepithelial regions of non-reticular epithelium (region B), and sporadically distributed in the interfollicular regions (region D). Interestingly, the distribution pattern of IgG ASCs in the pharyngeal tonsils closely mirrored that of IgA ASCs. The distribution densities of IgA and IgG ASCs in these four regions were significantly decreased in turn (P<0.05). However, IgA ASCs exhibited significantly higher densities than IgG ASCs in the same region (P<0.05). Age-related alterations indicated that the distribution densities of IgA and IgG ASCs in each region of the pharyngeal tonsils exhibited a trend of initially increasing and subsequently decreasing from young to old camels, reaching a peak in the pubertal group. As camels age, there was a significant decrease in the densities of IgA and IgG ASCs in all regions of the pharyngeal tonsils (P<0.05). The results demonstrate that the reticular epithelium and its subepithelial regions in the pharyngeal tonsils of Bactrian camels are the primary regions where IgA and IgG ASCs colonize and exert their immune functions. These regions play a pivotal role in inducing immune responses and defending against pathogen invasions in the pharyngeal tonsils. IgA ASCs may be the principal effector cells of the mucosal immune response in the pharyngeal tonsils of Bactrian camels. Aging significantly reduces the densities of IgA and IgG ASCs, while leaving their distribution patterns unaffected. These findings will provide valuable insights for further investigations into the immunomorphology, immunosenescence, and response mechanisms of the pharyngeal tonsils in Bactrian camels.

6.
Angew Chem Int Ed Engl ; : e202403917, 2024 May 31.
Article En | MEDLINE | ID: mdl-38818640

Although dearomative functionalizations enable the direct conversion of flat aromatics into precious three-dimensional architectures, the case for simple arenes remains largely underdeveloped due to the high aromatic stabilization energy. We herein report a dearomative sequential addition of two nucleophiles to arene π-bonds via umpolung of chromium-arene complexes. This mode enables divergent dearomative carbonylations of benzene derivatives by tolerating various nucleophiles in combination with alcohols or amines under CO-gas-free conditions, thus providing modular access to functionalized esters or amides. The tunable synthesis of 1,3- or 1,4-cyclohexadienes as well as the construction of all-carbon quaternary centers further highlight the versatility of this dearomatization. Diverse late-stage modifications and derivatizations towards synthetically challenging and bioactive molecules reveal the synthetic utility. A possible mechanism was proposed based on control experiments and intermediate tracking.

7.
J Phys Chem A ; 128(21): 4189-4198, 2024 May 30.
Article En | MEDLINE | ID: mdl-38748760

In order to investigate the impact of an external electric field on the sensitivity of ß-HMX explosives, we employ first-principles calculations to determine the molecular structure, dipole moment, and electronic properties of both ß-HMX crystals and individual ß-HMX molecules under varying electric fields. When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of ß-HMX, the calculation results indicate that an increase in the bond length (N1-N3/N1'-N3') of the triggering bond, an increase in the main Qnitro (N3, N3') value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. Among these directions, the [010] direction exhibits the highest sensitivity, which can be attributed to the significantly smaller effective mass along the [010] direction compared with the [001] and [100] directions. Moreover, the application of an external electric field along the Y direction of the coordinate system on individual ß-HMX molecules reveals that the strong polarization effect induced by the electric field enhances the decomposition of the N1-N3 bonds. In addition, due to the periodic potential energy of ß-HXM crystal, the polarization effect of ß-HMX crystal caused by an external electric field is much smaller than that of a single ß-HXM molecule.

8.
Bioorg Chem ; 148: 107424, 2024 Jul.
Article En | MEDLINE | ID: mdl-38728908

Pyrazolopyrimidine derivatives, including pyrazolopyrimidines, 6-aminopyrazolopyrimidines, 6-[(formyloxy)methyl]pyrazolopyrimidines, 6-(hydroxymethyl)pyrazolopyrimidine, and 6-(aminomethyl)pyrazolopyrimidines have been successfully prepared and tested against NCI-H226, NPC-TW01, and Jurkat cancer cell lines. Among the tested pyrazolopyrimidine compounds, we found 6-aminopyrazolopyrimidines and 6-(aminomethyl)pyrazolopyrimidines with essential o-ClPh or p-ClPh substituted moieties on N-1 pyrazole ring exhibited the best IC50 inhibition activity for Jurkat cells. Furthermore, optimization of the SAR study on the C-6 position of pyrazolopyrimidine ring demonstrated that 6-(N-substituted-methyl)pyrazolopyrimidines 17b, 17d, and 19d possessed the significant IC50 inhibitory activity for the different leukemia cell lines, especially for Jurkat, K-562, and HL-60. On the other hand, further SAR inhibition and docking model studies revealed that compound 19d, which has a 3-(1H-imidazol-1-yl)propan-1-amino side-chain on the C-6 position, was able to form four hydrogen bonds with residues Ala226, Leu152, and Glu194 and specifically extended into the P1 pocket subsite with Aurora A, resulting in improved inhibitory activity almost similar to SNS-314. To explore the anti-cancer mechanism, compound 19d was measured by Western blot analysis in Jurkat T-cells, however, it showed non-responsibility to Aurora B. For the further structural modifications on the lateral chain of compound 19d, compounds 24 with longer lateral chain were designed and synthesized for testing leukemia cell lines. However, compounds 24 was significantly decrease inhibition potency against leukemia cell lines. Based on the in-vitro results, compounds 17b and 19d could be considered to be the best potential lead drug in our study for the development of new and effective therapies for leukemia treatment. On the other hand, the DHFR inhibition results indicated compound 19d possessed good inhibitory activity and better than the reported naphthalene derivative. Through further comparisons of the model superposition of three-dimensional (3D) conformations in DHFR, compound 19d presented a similar structural alignment to Methotrexate and the reported naphthalene derivative and led to similar drug-like functional relationships. As a results, compound 19d would be a potential DHFR inhibitor for anti-leukemia drug candidate.


Antineoplastic Agents , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Pyrazoles , Pyrimidines , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Molecular Structure , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Molecular Docking Simulation , Dose-Response Relationship, Drug , Cell Line, Tumor , Leukemia/drug therapy , Leukemia/pathology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry
9.
World J Gastrointest Oncol ; 16(5): 1787-1795, 2024 May 15.
Article En | MEDLINE | ID: mdl-38764817

BACKGROUND: Individuals diagnosed with gastrointestinal tumors are at an increased risk of developing cardiovascular diseases. Among which, ventricular arrhythmia is a prevalent clinical concern. This suggests that ventricular arrhythmias may have predictive value in the prognosis of patients with gastrointestinal tumors. AIM: To explore the prognostic value of ventricular arrhythmias in patients with gastrointestinal tumors receiving surgery. METHODS: We retrospectively analyzed data from 130 patients undergoing gastrointestinal tumor resection. These patients were evaluated by a 24-h ambulatory electrocardiogram (ECG) at the Sixth Affiliated Hospital of Sun Yat-sen University from January 2018 to June 2020. Additionally, 41 general healthy age-matched and sex-matched controls were included. Patients were categorized into survival and non-survival groups. The primary endpoint was all-cause mortality, and secondary endpoints included major adverse cardiovascular events (MACEs). RESULTS: Colorectal tumors comprised 90% of cases. Preoperative ambulatory ECG monitoring revealed that among the 130 patients with gastrointestinal tumors, 100 (76.92%) exhibited varying degrees of premature ventricular contractions (PVCs). Ten patients (7.69%) manifested non-sustained ventricular tachycardia (NSVT). The patients with gastrointestinal tumors exhibited higher PVCs compared to the healthy controls on both conventional ECG [27 (21.3) vs 1 (2.5), P = 0.012] and 24-h ambulatory ECG [14 (1.0, 405) vs 1 (0, 6.5), P < 0.001]. Non-survivors had a higher PVC count than survivors [150.50 (7.25, 1690.50) vs 9 (0, 229.25), P = 0.020]. During the follow-up period, 24 patients died and 11 patients experienced MACEs. Univariate analysis linked PVC > 35/24 h to all-cause mortality, and NSVT was associated with MACE. However, neither PVC burden nor NSVT independently predicted outcomes according to multivariate analysis. CONCLUSION: Patients with gastrointestinal tumors exhibited elevated PVCs. PVCs > 35/24 h and NSVT detected by 24-h ambulatory ECG were prognostically significant but were not found to be independent predictors.

10.
Plant Direct ; 8(5): e587, 2024 May.
Article En | MEDLINE | ID: mdl-38766507

Auxin plays a key role in plant growth and development through auxin local synthesis, polar transport, and auxin signaling. Many previous reports on Arabidopsis have found that various types of auxin-related genes are involved in the development of the cotyledon, including the number, symmetry, and morphology of the cotyledon. However, the molecular mechanism by which auxin is involved in cotyledon formation remains to be elucidated. PID, which encodes a serine/threonine kinase localized to the plasma membrane, has been found to phosphorylate the PIN1 protein and regulate its polar distribution in the cell. The loss of function of pid resulted in an abnormal number of cotyledons and defects in inflorescence. It was interesting that the pid mutant interacted synergistically with various types of mutant to generate the severe developmental defect without cotyledon. PID and these genes were indicated to be strongly correlated with cotyledon formation. In this review, PID-centered genetic interactions, related gene functions, and corresponding possible pathways are discussed, providing a perspective that PID and its co-regulators control cotyledon formation through multiple pathways.

11.
Article En | MEDLINE | ID: mdl-38768002

Impact dynamics are crucial for estimating the growth patterns of NFT projects by tracking the diffusion and decay of their relative appeal among stakeholders. Machine learning methods for impact dynamics analysis are incomprehensible and rigid in terms of their interpretability and transparency, whilst stakeholders require interactive tools for informed decision-making. Nevertheless, developing such a tool is challenging due to the substantial, heterogeneous NFT transaction data and the requirements for flexible, customized interactions. To this end, we integrate intuitive visualizations to unveil the impact dynamics of NFT projects. We first conduct a formative study and summarize analysis criteria, including substitution mechanisms, impact attributes, and design requirements from stakeholders. Next, we propose the Minimal Substitution Model to simulate substitutive systems of NFT projects that can be feasibly represented as node-link graphs. Particularly, we utilize attribute-aware techniques to embed the project status and stakeholder behaviors in the layout design. Accordingly, we develop a multi-view visual analytics system, namely NFTracer, allowing interactive analysis of impact dynamics in NFT transactions. We demonstrate the informativeness, effectiveness, and usability of NFTracer by performing two case studies with domain experts and one user study with stakeholders. The studies suggest that NFT projects featuring a higher degree of similarity are more likely to substitute each other. The impact of NFT projects within substitutive systems is contingent upon the degree of stakeholders' influx and projects' freshness.

12.
Sensors (Basel) ; 24(10)2024 May 20.
Article En | MEDLINE | ID: mdl-38794112

To effectively solve the increasingly complex problems experienced by human beings, the latest development trend is to apply a large number of different types of sensors to collect data in order to establish effective solutions based on deep learning and artificial intelligence [...].

13.
Plants (Basel) ; 13(10)2024 May 16.
Article En | MEDLINE | ID: mdl-38794460

Glycosylation is catalyzed by UDP-glycosyltransferase (UGT) and plays an important role in enriching the diversity of flavonoids. Rubus plants contain a lot of natural flavonoid glycosides, which are important plants with a homology of medicine and food. However, information about the Rubus UGT gene family is very limited. In this study, we carried out genome-wide analysis and identified the 172, 121, 130, 121 UGT genes in R. chingii, R. corchorifolius, R. idaeus, and R. occidentalis, respectively, and divided them into 18 groups. The analysis of the protein motif and gene structure showed that there were structural and functional conservations in the same group, but there were differences among different groups. Gene replication analysis showed that raspberry and dicotyledons had a higher homology. The expansion of the UGTs gene family was mainly driven by tandem replication events, and experienced purified selection during the long evolution of the raspberry. Cis-acting element analysis showed that they were related to plant growth and development, hormone regulation, and stress response. In addition, according to a comprehensive analysis of the co-expression network constructed by transcriptome data and phylogenetic homology, RchUGT169 was identified as a flavonoid glucosyltransferase. Through the transient expression in tobacco, it was verified that RchUGT169 could catalyze the conversion of kaempferol and quercetin to the corresponding flavonoid glycosides. In conclusion, this research enriched the understanding of the diversity of UGTs in Rubus and determined that RcUGT169 can catalyze flavonoids.

14.
Animals (Basel) ; 14(7)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38612284

Non-esterified fatty acids (NEFAs) are pivotal in energy metabolism, yet high concentrations can lead to ketosis, a common metabolic disorder in cattle. Our laboratory observed lower levels of L-histidine in cattle suffering from ketosis, indicating a potential interaction between L-histidine and NEFA metabolism. This relationship prompted us to investigate the metabolomic alterations in bovine mammary epithelial cells (BMECs) induced by elevated NEFA levels and to explore L-histidine's potential mitigating effects. Our untargeted metabolomic analysis revealed 893 and 160 metabolite changes in positive and negative models, respectively, with VIP scores greater than 1 and p-values below 0.05. Notable metabolites like 9,10-epoxy-12-octadecenoic acid were upregulated, while 9-Ethylguanine was downregulated. A pathway analysis suggested disruptions in fatty acid and steroid biosynthesis pathways. Furthermore, L-histidine treatment altered 61 metabolites in the positive model and 34 in the negative model, with implications for similar pathways affected by NEFA. Overlaying differential metabolites from both conditions uncovered a potential key mediator, 1-Linoleoylglycerophosphocholine, which was regulated in opposite directions by NEFA and L-histidine. Our study uncovered that both NEFA L- and histidine metabolomics analyses pinpoint similar lipid biosynthesis pathways, with 1-Linoleoylglycerophosphocholine emerging as a potential key metabolite mediating their interaction, a discovery that may offer insights for therapeutic strategies in metabolic diseases.

15.
Biotechnol J ; 19(4): e2300614, 2024 Apr.
Article En | MEDLINE | ID: mdl-38581093

Poly-γ-glutamic acid (γ-PGA) is a microbial-derived polymer with molecular weight (Mw) from 104 to 107 Da, and the high-Mw (> 7.0 × 105 Da) or ultra-high-Mw (> 5.0 × 106 Da) γ-PGA has important application value as a tissue engineering material, as a flocculant, and as a heavy metal remover. Therefore, how to produce these high-Mw γ-PGAs with low cost and high efficiency has attracted wide attention. In this study, a γ-PGA producer was isolated from the natural environment, and identified and named Bacillus subtilis GXD-20. Then, the ultra-high-Mw (> 6.0 × 106 Da) γ-PGA produced by GXD-20 was characterized. Interestingly, GXD-20 could produce γ-PGA at 42°C, and exhibited a γ-PGA titer of up to 22.29 ± 0.59 g L-1 in a 5-L fermenter after optimization of the fermentation process. Comparative genomic analysis indicated that the specific protein sequence and subcellular localization of PgdS (a γ-PGA-degrading enzyme) were closely related to the ultra-high-Mw of γ-PGA. Transcriptomic analysis revealed that the high γ-PGA titer at 42°C was mainly related to the high expression of genes encoding enzymes for sucrose transportation and utilization, nitrogen transportation, endogenous glutamate synthesis, and γ-PGA synthesis. These results provide new insights into the production of ultra-high-Mw γ-PGA by Bacillus at high temperatures.


Bacillus subtilis , Glutamic Acid , Polyglutamic Acid/analogs & derivatives , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Glutamic Acid/metabolism , Molecular Weight , Polyglutamic Acid/genetics , Polyglutamic Acid/metabolism , Genomics , Fermentation
16.
Int J Surg ; 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652275

BACKGROUND: The safety and efficacy of neoadjuvant immunochemotherapy (nICT) for locally advanced gastric cancer (LAGC) remain controversial. METHODS: Patients with LAGC who received either nICT or neoadjuvant chemotherapy (nCT) at 3 tertiary referral teaching hospitals in China between January 2016 and October 2022 were analysed. After propensity-score matching (PSM), comparing the radiological response, pathological response rate, perioperative outcomes, and early recurrence between the two groups. RESULTS: After PSM, 585 patients were included, with 195 and 390 patients comprising the nICT and nCT groups, respectively. The nICT group exhibited a higher objective response rate (79.5% versus [vs.] 59.0%; P<0.001), pathological complete response rate (14.36% vs. 6.41%; P=0.002) and major pathological response rate (39.49% vs. 26.15%; P=0.001) compared with the nCT group. The incidence of surgical complications (17.44% vs. 16.15%, P=0.694) and proportion of perioperative textbook outcomes (80.0% vs. 81.0%; P=0.767) were similar in both groups. The nICT group had a significantly lower proportion of early recurrence than the nCT group (29.7% vs. 40.8%; P=0.047). Furthermore, the multivariable logistic analysis revealed that immunotherapy was an independent protective factor against early recurrence (odds ratio 0.62 [95% CI 0.41-0.92]; P=0.018). No significant difference was found in neoadjuvant therapy drug toxicity between the two groups (51.79% vs. 45.38%; P=0.143). CONCLUSIONS: Compared with nCT, nICT is safe and effective, which significantly enhanced objective and pathological response rates, and reduced the risk for early recurrence among patients with LAGC. TRIAL REGISTRATION: Clinical Trials.gov.

17.
Med ; 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38670112

BACKGROUND: The gut mycobiome is closely linked to health and disease; however, its role in the progression of type 2 diabetes mellitus (T2DM) remains obscure. Here, a multi-omics approach was employed to explore the role of intestinal fungi in the deterioration of glycemic control. METHODS: 350 participants without hypoglycemic therapies were invited for a standard oral glucose tolerance test to determine their status of glycemic control. The gut mycobiome was identified through internal transcribed spacer sequencing, host genetics were determined by genotyping array, and plasma metabolites were measured with untargeted liquid chromatography mass spectrometry. FINDINGS: The richness of fungi was higher, whereas its dissimilarity was markedly lower, in participants with T2DM. Moreover, the diversity and composition of fungi were closely associated with insulin sensitivity and pancreatic ß-cell functions. With the exacerbation of glycemic control, the co-occurrence network among fungus taxa became increasingly complex, and the complexity of the interaction network was inversely associated with insulin sensitivity. Mendelian randomization analysis further demonstrated that the Archaeorhizomycetes class, Fusarium genus, and Neoascochyta genus were causally linked to impaired glucose metabolism. Furthermore, integrative analysis with metabolomics showed that increased 4-hydroxy-2-oxoglutaric acid, ketoleucine, lysophosphatidylcholine (20:3/0:0), and N-lactoyl-phenylalanine, but decreased lysophosphatidylcholine (O-18:2), functioned as key molecules linking the adverse effect of Fusarium genus on insulin sensitivity. CONCLUSIONS: Our study uncovers a strong association between disturbance in gut fungi and the progression of T2DM and highlights the potential of targeting the gut mycobiome for the management of T2DM. FUNDINGS: This study was supported by MOST and NSFC of China.

18.
Oncol Lett ; 27(6): 252, 2024 Jun.
Article En | MEDLINE | ID: mdl-38646495

The pan-immune-inflammation-value (PIV) is a comprehensive biomarker that integrates different peripheral blood cell subsets. The present study aimed to evaluate the prognostic ability of PIV in patients with nasopharyngeal carcinoma (NPC) undergoing chemoradiotherapy. PIV was assessed using the following equation: (Neutrophil count × platelet count × monocyte count)/lymphocyte count. The Kaplan-Meier method and Cox hazards regression models were used for survival analyses. The optimal cut-off values for PIV and systemic immune-inflammation index (SII) were determined using receiver operating characteristic analysis to be 428.0 and 1032.7, respectively. A total of 319 patients were recruited. Patients with a low baseline PIV (≤428.0) accounted for 69.9% (n=223) and patients with a high baseline PIV (>428.0) accounted for 30.1% (n=96). Compared with patients with low PIV, patients with a high PIV had significantly worse 5-year progression-free survival [PFS; 66.8 vs. 77.1%; hazard ratio (HR), 1.97; 95% confidence interval (CI), 1.22-3.23); P=0.005] and 5-year overall survival (OS; 68.7 vs. 86.9%, HR, 2.71; 95% CI, 1.45-5.03; P=0.001). PIV was also a significant independent prognostic indicator for OS (HR, 2.19; 95% CI, 1.16-4.12; P=0.016) and PFS (HR, 1.86; 95% CI, 1.14-3.04; P=0.013) and outperformed the SII in multivariate analysis. In conclusion, the PIV was a powerful predictor of survival outcomes and outperformed the SII in patients with NPC treated with chemoradiotherapy. Prospective validation of the PIV should be performed to better stratify radical treatment of patients with NPC.

19.
ACS Omega ; 9(15): 17297-17306, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38645355

In order to discover novel compounds with excellent agricultural activities, novel flavonol derivatives containing 1,3,4-thiadiazole were synthesized and evaluated for their antifungal activities. The bioassay results showed that some of the target compounds had good antifungal activities against Botrytis cinerea, Phomopsis sp. and Sclerotinia sclerotiorum in vitro. It is worth noting that the half-effective concentration (EC50) value of Y18 against B. cinerea was 2.4 µg/mL, which was obviously superior to that of azoxystrobin (21.7 µg/mL). The curative activity of Y18 at 200 µg/mL (79.9%) was better than that of azoxystrobin (59.1%), and its protective activity (90.9%) was better than that of azoxystrobin (83.9%). Morphological studies by using scanning electron microscopy and fluorescence microscopy revealed that Y18 could affect the normal growth of B. cinerea mycelium. In addition, the mechanism of action studies indicated that Y18 could affect the integrity of cell membranes by inducing the production of endogenous reactive oxygen species and the release of the malondialdehyde content, leading to membrane lipid peroxidation and the release of cell contents. The inhibitory activity of flavonol derivatives containing 1,3,4-thiadiazole on plant fungi is notable, offering significant potential for the development of new antifungal agents.

20.
J Arthroplasty ; 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38614358

BACKGROUND: In patients undergoing total joint arthroplasty, the use of dexamethasone (DEX) may cause perioperative blood glucose (BG) disorders, leading to complications even in patients who do not have diabetes. We aimed to evaluate the effects of different DEX doses on perioperative BG levels. METHODS: A total of 135 patients who do not have diabetes were randomized into three groups: preoperative intravenous (IV) injection of normal saline (Group A, the placebo group), preoperative IV injection of 10 mg DEX (Group B), and preoperative IV injection of 20 mg DEX (Group C). Postoperative fasting BG (FBG) levels were designated as the primary outcome, while postoperative postprandial BG (PBG) levels were assigned as the secondary outcome. The incidence of complications was recorded. We also investigated the risk factors for FBG ≥ 140 mg/dL and PBG ≥ 180 mg/dL. RESULTS: The FBG levels were higher in Groups B and C than in Group A on postoperative days (PODs) 0 and 1. The PBG levels were lower for Groups A and B compared to Group C on POD 1. No differences in FBG or PBG were detected beyond POD 1. Elevated preoperative glycosylated hemoglobin A1c levels increased the risk of FBG ≥ 140 mg/dL and PBG ≥ 180 mg/dL, respectively. However, preoperative IV injection of DEX was not associated with FBG ≥ 140 mg/dL or PBG ≥ 180 mg/dL. No differences were found in postoperative complications among the three groups. CONCLUSIONS: The preoperative IV administration of 10 or 20 mg DEX in patients who do not have diabetes showed transient effects on postoperative BG after total joint arthroplasty. The preoperative glycosylated hemoglobin A1c level threshold (regardless of the administration or dosage of DEX) that increased the risk for the occurrence of FBG ≥ 140 mg/dL and PBG ≥ 180 mg/dL was 5.75 and 5.85%, respectively.

...