Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.975
Filter
1.
Drug Des Devel Ther ; 18: 2837-2845, 2024.
Article in English | MEDLINE | ID: mdl-39006192

ABSTRACT

Background: To investigate the effects of nalbuphine on emergency agitation (EA), which affects up to 80% of the children following otolaryngology procedures, in children undergoing cochlear implantation. Methods: A prospective double-blinded randomized controlled clinical trial was conducted between November 2020 and October 2022. Eligible children, aged 6 months to 3 years old, were randomly assigned to either 0.1 mg/kg, 0.15 mg/kg, 0.2 mg/kg nalbuphine or 0.9% saline groups. EA was defined by the Pediatric Anesthesia Emergence Delirium (PAED) score ≥10. Extubation time, post-anesthesia care unit (PACU) length of stay, severe EA (PAED ≥ 15), peak PAED score, the Faces, Legs, Activity, Cry, and Consolability (FLACC) scale, Ramsay sedation score, and adverse events were also recorded. Results: A total of 104 children were enrolled, with 26 children in each group. Nalbuphine significantly reduced the EA occurrence from 73.1% in the saline group to 38.5%, 30.8%, and 26.9% in the 0.1 mg/kg, 0.15 mg/kg, and 0.2 mg/kg nalbuphine groups, respectively (P < 0.001), without affecting the extubation time and PACU length of stay. More children (34.6%) in the 0.9% saline group experienced severe EA. Higher dose nalbuphine (0.15 mg/kg, 0.2 mg/kg) showed lower peak PAED score, better analgesia and sedation effect compared with 0.1 mg/kg nalbuphine and saline groups. However, 0.2mg/kg nalbuphine caused undesired over-sedation in two (7.7%) children. No other adverse events were reported. Conclusion: Young children undergoing cochlear implantation surgery were at a high risk of EA and postoperative pain, while 0.2 mg/kg nalbuphine might be an ideal candidate for EA and pain prevention when used under close monitoring. Trial Registration: ChiCTR2000040407.


Subject(s)
Analgesics, Opioid , Cochlear Implantation , Emergence Delirium , Nalbuphine , Humans , Nalbuphine/administration & dosage , Nalbuphine/therapeutic use , Child, Preschool , Male , Double-Blind Method , Female , Prospective Studies , Infant , Emergence Delirium/prevention & control , Emergence Delirium/drug therapy , Cochlear Implantation/adverse effects , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/adverse effects , Dose-Response Relationship, Drug , Psychomotor Agitation/drug therapy , Psychomotor Agitation/prevention & control
2.
Nucleic Acids Res ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38950902

ABSTRACT

CCCTC-binding factor (CTCF) is an insulator protein that binds to a highly conserved DNA motif and facilitates regulation of three-dimensional (3D) nuclear architecture and transcription. CTCF binding sites (CTCF-BSs) reside in non-coding DNA and are frequently mutated in cancer. Our previous study identified a small subclass of CTCF-BSs that are resistant to CTCF knock down, termed persistent CTCF binding sites (P-CTCF-BSs). P-CTCF-BSs show high binding conservation and potentially regulate cell-type constitutive 3D chromatin architecture. Here, using ICGC sequencing data we made the striking observation that P-CTCF-BSs display a highly elevated mutation rate in breast and prostate cancer when compared to all CTCF-BSs. To address whether P-CTCF-BS mutations are also enriched in other cell-types, we developed CTCF-INSITE-a tool utilising machine learning to predict persistence based on genetic and epigenetic features of experimentally-determined P-CTCF-BSs. Notably, predicted P-CTCF-BSs also show a significantly elevated mutational burden in all 12 cancer-types tested. Enrichment was even stronger for P-CTCF-BS mutations with predicted functional impact to CTCF binding and chromatin looping. Using in vitro binding assays we validated that P-CTCF-BS cancer mutations, predicted to be disruptive, indeed reduced CTCF binding. Together this study reveals a new subclass of cancer specific CTCF-BS DNA mutations and provides insights into their importance in genome organization in a pan-cancer setting.

3.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000273

ABSTRACT

To address the increased energy demand, tumor cells undergo metabolic reprogramming, including oxidative phosphorylation (OXPHOS) and aerobic glycolysis. This study investigates the role of Kruppel-like factor 4 (KLF4), a transcription factor, as a tumor suppressor in hepatocellular carcinoma (HCC) by regulating ATP synthesis. Immunohistochemistry was performed to assess KLF4 expression in HCC tissues. Functional assays, such as CCK-8, EdU, and colony formation, as well as in vivo assays, including subcutaneous tumor formation and liver orthotopic xenograft mouse models, were conducted to determine the impact of KLF4 on HCC proliferation. Luciferase reporter assay and chromatin immunoprecipitation assay were utilized to evaluate the interaction between KLF4, miR-206, and RICTOR. The findings reveal low KLF4 expression in HCC, which is associated with poor prognosis. Both in vitro and in vivo functional assays demonstrate that KLF4 inhibits HCC cell proliferation. Mechanistically, it was demonstrated that KLF4 reduces ATP synthesis in HCC by suppressing the expression of RICTOR, a core component of mTORC2. This suppression promotes glutaminolysis to replenish the TCA cycle and increase ATP levels, facilitated by the promotion of miR-206 transcription. In conclusion, this study enhances the understanding of KLF4's role in HCC ATP synthesis and suggests that targeting the KLF4/miR-206/RICTOR axis could be a promising therapeutic approach for anti-HCC therapeutics.


Subject(s)
Adenosine Triphosphate , Carcinoma, Hepatocellular , Cell Proliferation , Gene Expression Regulation, Neoplastic , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors , Liver Neoplasms , MicroRNAs , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Kruppel-Like Factor 4/metabolism , Animals , Mice , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/biosynthesis , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Cell Line, Tumor , Male , Disease Progression , Mice, Nude , Female
4.
Med Educ Online ; 29(1): 2376802, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38970824

ABSTRACT

The stigma of nursing students towards people with mental illness (PMI) creates significant barriers to diagnosis, treatment, and recovery for those with PMI. It can also have a significant impact on the future career choices of nursing students in the field of psychiatry. Current research has found various influencing factors, including personal characteristics and educational influences. However, a comprehensive analysis that encompasses all aspects is lacking. The aim of the study was to conduct a convergent mixed-method systematic review to synthesize the influencing factors of the stigma of nursing students towards PMI according to Framework Integrating Normative Influences on Stigma (FINIS) at micro, meso, and macro levels. PubMed, Web of Science, Cochrane Library, EMBASE, CINAHL and PsycINFO were searched from 1990 to 31 December 2023. The reference lists of the included literature were further checked to identify potentially relevant articles. Two authors independently screened all titles, abstracts, and full-text articles and extracted data. Study quality was assessed by two authors using the Mixed Method Appraisal Tool (MMAT). A total of 4865 articles were initially retrieved, and 73 of these articles were included. The results suggested that the stigma towards PMI by nursing students was influenced by micro, meso and macro levels. At each FINIS level, the most frequent influencing factors are personal characteristics, the treatment system and media images. Numerous interconnected factors exert an influence on the stigma towards PMI among nursing students. Our research can be used to identify barriers and facilitators to nursing students' stigma towards PMI and to provide supporting information for interventions designed to reduce this stigma.


Subject(s)
Mental Disorders , Social Stigma , Students, Nursing , Students, Nursing/psychology , Humans , Mental Disorders/psychology , Attitude of Health Personnel
5.
Lancet Reg Health West Pac ; 48: 101112, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38978965

ABSTRACT

Background: Urban living is linked to better health outcomes due to a combination of enhanced access to healthcare, transportation, and human development opportunities. However, spatial inequalities lead to disparities, resulting in urban health advantages and penalties. Understanding the relationship between health and urban development is needed to generate empirical evidence in promoting healthy aging populations. This study provides a comparative analysis using epidemiological evidence across diverse major Chinese cities, examining how their unique urban development trajectories over time have impacted the health of their aging residents. Methods: We tracked changes in air pollution (NO2, PM2.5, O3), green space (measured by NDVI), road infrastructure (ring road areas), and nighttime lighting over 20 years in six major cities in China. We followed a longitudinal cohort of 4992 elderly participants (average age 87.8 years) over 16,824 person-years. We employed Cox proportional hazard regression to assess longevity, assessing 14 variables, including age, sex, ethnicity, marital status, residence, household income, occupation, education, smoking, alcohol consumption, exercise, and points of interest (POI) count of medicine-related facilities, sports, and leisure service-related places, and scenic spots within a 5 km-radius buffer. Findings: Geographic proximity to points of interest significantly improves survival. Elderly living in proximity of the POI-rich areas had a 34.6%-35.6% lower mortality risk compared to those in POI-poor areas, for the highest compared to the lowest quartile. However, POI-rich areas had higher air pollution levels, including PM2.5 and NO2, which was associated with a 21% and 10% increase in mortality risk for increase of 10 µg/m3, respectively. The benefits of urban living had higher effect estimates in monocentric cities, with clearly defined central areas, compared to polycentric layouts, with multiple satellite city centers. Interpretation: Spatial inequalities create urban health advantages for some and penalties for others. Proximity to public facilities and economic activities is associated with health benefits, and may counterbalance the negative health impacts of lower green space and higher air pollution. Our empirical evidence show optimal health gains for age-friendly urban environments come from a balance of infrastructure, points of interest, green spaces, and low air pollution. Funding: Natural Science Foundation of Beijing (IS23105), National Natural Science Foundation of China (82250610230, 72061137004), World Health Organization (2024/1463606-0), Research Fund Vanke School of Public Health Tsinghua University (2024JC002), Beijing TaiKang YiCai Public Welfare Foundation, National Key R&D Program of China (2018YFC2000400).

7.
Front Genet ; 15: 1359108, 2024.
Article in English | MEDLINE | ID: mdl-38966010

ABSTRACT

Purpose: This study aims to assess the causal relationship between Obstructive Sleep Apnea (OSA), dyslipidemia, and osteoporosis using Mendelian Randomization (MR) techniques. Methods: Utilizing a two-sample MR approach, the study examines the causal relationship between dyslipidemia and osteoporosis. Multivariable MR analyses were used to test the independence of the causal association of dyslipidemia with OSA. Single nucleotide polymorphisms (SNPs) were selected as instrumental variables based on genome-wide significance, independence, and linkage disequilibrium criteria. The data were sourced from publicly available Genome-Wide Association Studies (GWAS) of OSA (n = 375,657) from the FinnGen Consortium, the Global Lipids Genetics Consortium of dyslipidemia (n = 188,577) and the UK Biobank for osteoporosis (n = 456,348). Results: The MR analysis identified a significant positive association between genetically predicted OSA and triglyceride levels (OR: 1.15, 95% CI: 1.04-1.26, p = 0.006) and a negative correlation with high-density lipoprotein cholesterol (HDL-C) (OR: 0.84, 95% CI: 0.77-0.93, p = 0.0003). Conversely, no causal relationship was found between dyslipidemia (total cholesterol, triglycerides, HDL-C, and low-density lipoprotein cholesterol) and OSA or the relationship between OSA and osteoporosis. Conclusion: The study provides evidence of a causal relationship between OSA and dyslipidemia, highlighting the need for targeted prevention and management strategies for OSA to address lipid abnormalities. The absence of a causal link with osteoporosis and in the reverse direction emphasizes the need for further research in this area.

8.
Sci Total Environ ; 947: 174505, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971252

ABSTRACT

Nanobiotechnology is a potentially safe and sustainable strategy for both agricultural production and soil remediation, yet the potential of nanomaterials (NMs) application to remediate heavy metal(loid)-contaminated soils is still unclear. A meta-analysis with approximately 6000 observations was conducted to quantify the effects of NMs on safe crop production in soils contaminated with heavy metal(loid) (HM), and a machine learning approach was used to identify the major contributing features. Applying NMs can elevate the crop shoot (18.2 %, 15.4-21.2 %) and grain biomass (30.7 %, 26.9-34.9 %), and decrease the shoot and grain HM concentration by 31.8 % (28.9-34.5 %) and 46.8 % (43.7-49.8 %), respectively. Iron-NMs showed a greater potential to inhibit crop HM uptake compared to other types of NMs. Our result further demonstrates that NMs application substantially reduces the potential health risk of HM in crop grains by human health risk assessment. The NMs-induced reduction in HM accumulation was associated with decreasing HM bioavailability, as well as increased soil pH and organic matter. A random forest model demonstrates that soil pH and total HM concentration are the two significant features affecting shoot HM accumulation. This analysis of the literature highlights the significant potential of NMs application in promoting safe agricultural production in HM-contaminated agricultural lands.

9.
Neural Netw ; 178: 106423, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38906053

ABSTRACT

Generative models based on neural networks present a substantial challenge within deep learning. As it stands, such models are primarily limited to the domain of artificial neural networks. Spiking neural networks, as the third generation of neural networks, offer a closer approximation to brain-like processing due to their rich spatiotemporal dynamics. However, generative models based on spiking neural networks are not well studied. Particularly, previous works on generative adversarial networks based on spiking neural networks are conducted on simple datasets and do not perform well. In this work, we pioneer constructing a spiking generative adversarial network capable of handling complex images and having higher performance. Our first task is to identify the problems of out-of-domain inconsistency and temporal inconsistency inherent in spiking generative adversarial networks. We address these issues by incorporating the Earth-Mover distance and an attention-based weighted decoding method, significantly enhancing the performance of our algorithm across several datasets. Experimental results reveal that our approach outperforms existing methods on the MNIST, FashionMNIST, CIFAR10, and CelebA. In addition to our examination of static datasets, this study marks our inaugural investigation into event-based data, through which we achieved noteworthy results. Moreover, compared with hybrid spiking generative adversarial networks, where the discriminator is an artificial analog neural network, our methodology demonstrates closer alignment with the information processing patterns observed in the mouse. Our code can be found at https://github.com/Brain-Cog-Lab/sgad.

10.
Molecules ; 29(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38893339

ABSTRACT

Six ionone glycosides (1-3 and 5-7), including three new ones, named capitsesqsides A-C (1-3), together with an eudesmane sesquiterpenoid glycoside (4) and three known triterpenoid saponins (8-10) were isolated from Rhododendron capitatum. The structures of these compounds were determined by extensive spectroscopic techniques (MS, UV, 1D-NMR, and 2D-NMR) and comparison with data reported in the literature. The absolute configurations were determined by comparison of the experimental and theoretically calculated ECD curves and LC-MS analyses after acid hydrolysis and derivatization. The anti-inflammatory activities of these compounds were evaluated in the LPS-induced RAW264.7 cells. Molecular docking demonstrated that 2 has a favorable affinity for NLRP3 and iNOS.


Subject(s)
Glycosides , Rhododendron , Rhododendron/chemistry , Mice , Glycosides/chemistry , Glycosides/pharmacology , Glycosides/isolation & purification , RAW 264.7 Cells , Animals , Molecular Docking Simulation , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Norisoprenoids/chemistry , Norisoprenoids/pharmacology , Norisoprenoids/isolation & purification , Molecular Structure , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology
11.
Materials (Basel) ; 17(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38893881

ABSTRACT

Urea stands as a ubiquitous environmental contaminant. However, not only does urea oxidation reaction technology facilitate energy conversion, but it also significantly contributes to treating wastewater rich in urea. Furthermore, urea electrolysis has a significantly lower theoretical potential (0.37 V) compared to water electrolysis (1.23 V). As an electrochemical reaction, the catalytic efficacy of urea oxidation is largely contingent upon the catalyst employed. Among the plethora of urea oxidation electrocatalysts, nickel-based compounds emerge as the preeminent transition metal due to their cost-effectiveness and heightened activity in urea oxidation. Ni(OH)2 is endowed with manifold advantages, including structural versatility, facile synthesis, and stability in alkaline environments. This review delineates the recent advancements in Ni(OH)2 catalysts for electrocatalytic urea oxidation reaction, encapsulating pivotal research findings in morphology, dopant incorporation, defect engineering, and heterogeneous architectures. Additionally, we have proposed personal insights into the challenges encountered in the research on nickel hydroxide for urea oxidation, aiming to promote efficient urea conversion and facilitate its practical applications.

12.
J Leukoc Biol ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941443

ABSTRACT

Itaconate is one of the most studied immunometabolites produced by myeloid cells during inflammatory response. It mediates a wide range of anti-inflammatory and immunoregulatory effects and plays a role in a number of pathological states, including autoimmunity and cancer. Itaconate and its derivatives are considered as potential therapeutic agents for treatment of inflammatory diseases. While immunoregulatory effects of itaconate have been extensively studied in vitro and using knock-out mouse models, less is known about how therapeutic administration of this metabolite regulates inflammatory response in vivo. Here, we investigate the immunoregulatory properties of exogenous administration of itaconate (ITA) and its derivative dimethyl itaconate (DI) in a mouse model of LPS-induced inflammation. The data show that administration of ITA or DI controls systemic production of multiple cytokines, including increased IL-10 production. However, only DI was able to suppress systemic production of IFNγ and IL-1ß. In contrast to in vitro data, administration of ITA or DI in vivo resulted in systemic upregulation of IL-6 in the blood. Electrophilic stress due to ITA or DI was not responsible for IL-6 upregulation. However, inhibition of SDH with dimethyl malonate (DM) also resulted in elevated systemic levels of IL-6 and IL-10. Taken together, our study reports a novel effect of exogenous itaconate and its derivative DI on the production of IL-6 in vivo, with important implications for the development of itaconate-based anti-inflammatory therapies.

13.
J Hazard Mater ; 476: 135043, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38941835

ABSTRACT

Cadmium (Cd) accumulation in rice, a global environmental issue, poses a significant threat to human health due to its widespread presence and potential transfer through the food chain. Selenium (Se), an essential micronutrient for humans and plants, can reduce Cd uptake in rice and alleviate Cd-induced toxicity. However, the effects and mechanisms of Se supplementation on rice performance in Cd-contaminated soil remain largely unknown. Here, a global meta-analysis was conducted to evaluate the existing knowledge on the effects and mechanisms by which Se supplementation impacts rice growth and Cd accumulation. The result showed that Se supplementation has a significant positive impact on rice growth in Cd-contaminated soil. Specifically, Se supplementation decreased Cd accumulation in rice roots by 16.3 % (11.8-20.6 %), shoots by 24.6 % (19.9-29.1 %), and grain by 37.3 % (33.4-40.9 %), respectively. The grain Cd reduction was associated with Se dose and soil Cd contamination level but not Se type or application method. Se influences Cd accumulation in rice by regulating the expression of Cd transporter genes (OSLCT1, OSHMA2, and OSHMA3), enhancing Cd sequestration in the cell walls, and reducing Cd bioavailability in the soil. Importantly, Se treatment promoted Se enrichment in rice and alleviated oxidative damage associated with Cd exposure by stimulating photosynthesis and activating antioxidant enzymes. Overall, Se treatment mitigated the health hazard associated with Cd in rice grains, particularly in lightly contaminated soil. These findings reveal that Se supplementation is a promising strategy for simultaneous Cd reduction and Se enrichment in rice.

14.
J Alzheimers Dis ; 100(1): 77-85, 2024.
Article in English | MEDLINE | ID: mdl-38848185

ABSTRACT

Background: Rapidly progressive dementia (RPD), characterized by a rapid cognitive decline leading to dementia, comprises a diverse range of disorders. Despite advancements in diagnosis and treatment, research on RPD primarily focuses on Western populations. Objective: This study aims to explore the etiology and demographics of RPD in Chinese patients. Methods: We retrospectively analyzed 323 RPD inpatients at Huashan Hospital from May 2019 to March 2023. Data on sociodemographic factors, epidemiology, clinical presentation, and etiology were collected and analyzed. Results: The median onset age of RPD patients was 60.7 years. Two-thirds received a diagnosis within 6 months of symptom onset. Memory impairment was the most common initial symptom, followed by behavioral changes. Neurodegenerative diseases accounted for 47.4% of cases, with central nervous system inflammatory diseases at 30.96%. Autoimmune encephalitis was the leading cause (16.7%), followed by Alzheimer's disease (16.1%), neurosyphilis (11.8%), and Creutzfeldt-Jakob disease (9.0%). Alzheimer's disease, Creutzfeldt-Jakob disease, and frontotemporal dementia were the primary neurodegenerative causes, while autoimmune encephalitis, neurosyphilis, and vascular cognitive impairment were the main non-neurodegenerative causes. Conclusions: The etiology of RPD in Chinese patients is complex, with neurodegenerative and non-neurodegenerative diseases equally prevalent. Recognizing treatable conditions like autoimmune encephalitis and neurosyphilis requires careful consideration and differentiation.


Subject(s)
Dementia , Tertiary Care Centers , Humans , Male , Female , Retrospective Studies , China/epidemiology , Middle Aged , Aged , Dementia/epidemiology , Dementia/etiology , Disease Progression , Alzheimer Disease/epidemiology , Neurosyphilis/epidemiology , Neurosyphilis/complications , Creutzfeldt-Jakob Syndrome/epidemiology , Frontotemporal Dementia/epidemiology , Encephalitis/epidemiology , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/etiology , Aged, 80 and over , Neurodegenerative Diseases/epidemiology
15.
BMC Plant Biol ; 24(1): 617, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937686

ABSTRACT

BACKGROUND: Ichang papeda (Citrus ichangensis), a wild perennial plant of the Rutaceae family, is a cold-hardy plant. WRKY transcription factors are crucial regulators of plant growth and development as well as abiotic stress responses. However, the WRKY genes in C. ichangensis (CiWRKY) and their expression patterns under cold stress have not been thoroughly investigated, hindering our understanding of their role in cold tolerance. RESULTS: In this study, a total of 52 CiWRKY genes identified in the genome of C. ichangensis were classified into three main groups and five subgroups based on phylogenetic analysis. Comprehensive analyses of motif features, conserved domains, and gene structures were performed. Segmental duplication plays a significant role in the CiWRKY gene family expansion. Cis-acting element analysis revealed the presence of various stress-responsive elements in the promoters of the majority of CiWRKYs. Gene ontology (GO) analysis and protein-protein interaction predictions indicate that the CiWRKYs exhibit crucial roles in regulation of both development and stress response. Expression profiling analysis demonstrates that 14 CiWRKYs were substantially induced under cold stress. Virus-induced gene silencing (VIGS) assay confirmed that CiWRKY31, one of the cold-induced WRKYs, functions positively in regulation of cold tolerance. CONCLUSION: Sequence and protein properties of CiWRKYs were systematically analyzed. Among the 52 CiWRKY genes 14 members exhibited cold-responsive expression patterns, and CiWRKY31 was verified to be a positive regulator of cold tolerance. These findings pave way for future investigations to understand the molecular functions of CiWRKYs in cold tolerance and contribute to unravelling WRKYs that may be used for engineering cold tolerance in citrus.


Subject(s)
Citrus , Cold-Shock Response , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Citrus/genetics , Citrus/physiology , Cold-Shock Response/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Gene Expression Profiling , Genes, Plant , Cold Temperature
16.
J Hum Genet ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866925

ABSTRACT

BACKGROUND: Intronic GAA repeat expansion ([GAA] ≥250) in FGF14 is associated with the late-onset neurodegenerative disorder, spinocerebellar ataxia 27B (SCA27B, GAA-FGF14 ataxia). We aim to determine the prevalence of the GAA repeat expansion in FGF14 in Chinese populations presenting late-onset cerebellar ataxia (LOCA) and evaluate the characteristics of tandem repeat inheritance, radiological features and sympathetic nerve involvement. METHODS: GAA-FGF14 repeat expansion was screened in an undiagnosed LOCA cohort (n = 664) and variations in repeat-length were analyzed in families of confirmed GAA-FGF14 ataxia patients. Brain magnetic resonance imaging (MRI) was used to evaluate the radiological feature in GAA-FGF14 ataxia patients. Clinical examinations and sympathetic skin response (SSR) recordings in GAA-FGF14 patients (n = 16) were used to quantify sympathetic nerve involvement. RESULTS: Two unrelated probands (2/664) were identified. Genetic screening for GAA-FGF14 repeat expansion was performed in 39 family members, 16 of whom were genetically diagnosed with GAA-FGF14 ataxia. Familial screening revealed expansion of GAA repeats in maternal transmissions, but contraction upon paternal transmission. Brain MRI showed slight to moderate cerebellar atrophy. SSR amplitude was lower in GAA-FGF14 patients in pre-symptomatic stage compared to healthy controls, and further decreased in the symptomatic stage. CONCLUSIONS: GAA-FGF14 ataxia was rare among Chinese LOCA cases. Parental gender appears to affect variability in GAA repeat number between generations. Reduced SSR amplitude is a prominent feature in GAA-FGF14 patients, even in the pre-symptomatic stage.

17.
IET Nanobiotechnol ; 2024: 5702517, 2024.
Article in English | MEDLINE | ID: mdl-38863972

ABSTRACT

Background: Diabetic nephropathy (DN) is the leading cause of chronic kidney disease, and the activation and infiltration of phagocytes are critical steps of DN. This study aimed to explore the mechanism of exosomes in macrophages and diabetes nephropathy and the role of miRNA-34a, which might provide a new path for treating DN. Materials and Methods: The DN model was established, and the success of the model establishment was confirmed by detecting general indicators, HE staining, and immunohistochemistry. Electron microscopy and NanoSight Tracking Analysis (NTA) were used to see the morphology and size of exosomes. MiRNA-34a inhibitor, miRNA-34a mimics, pc-PPARGC1A, and controls were transfected in macrophages with or without kidney exosomal. A dual-luciferase reporter gene experiment verifies the targeting relationship between miRNA-34a and PPARGC1A. After exosomal culture, macrophages are co-cultured with normal renal tubular cells to detect renal tubular cell fibrosis. Q-PCR and western blot were undertaken to detect related RNA and proteins. Results: An animal model of diabetic nephropathy was successfully constructed. Macrophages could phagocytose exosomes. After ingesting model exosomes, M1 macrophages were activated, while M2 macrophages were weakened, indicating the model mice's kidney exosomes caused the polarization. MiRNA-34a inhibitor increased PPARGC1A expression. MiRNA-34a expressed higher in diabetic nephropathy Model-Exo. MiRNA-34a negatively regulated PPARGC1A. PPARGC1A rescued macrophage polarization and renal tubular cell fibrosis. Conclusion: Exosomal miRNA-34a of tubular epithelial cells promoted M1 macrophage activation in diabetic nephropathy via negatively regulating PPARGC1A expression, which may provide a new direction for further exploration of DN treatment.


Subject(s)
Diabetic Nephropathies , Exosomes , Fibrosis , Macrophages , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Animals , Exosomes/metabolism , Exosomes/genetics , Mice , Macrophages/metabolism , Male , Kidney Tubules/metabolism , Kidney Tubules/pathology , Mice, Inbred C57BL , Disease Models, Animal , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology
18.
Ecotoxicol Environ Saf ; 281: 116627, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925032

ABSTRACT

BACKGROUND: Evidence linking nitrogen dioxide (NO2) air pollution to life span of high-vulnerability older adults is extensively scarce in low- and middle-income countries. This study seeks to quantify mortality risk, excess deaths, and loss of life expectancy (LLE) associated with long-term exposure to NO2 among elderly individuals in China. METHODS: A nationwide dynamic cohort of 20352 respondents ≥65 years old were enrolled from the China Longitudinal Health and Longevity Survey during 2005-2018. Residential exposures to NO2 and co-pollutants were assessed by well-validated spatiotemporal prediction models. A Cox regression model with time-dependent covariates was utilized to quantify the association of all-cause mortality with NO2 exposure, controlling for confounders such as demographics, lifestyle, health status, and ambient temperature. NO2-attributable deaths and LLE were evaluated for the years 2010 and 2020 based on the pooled NO2-mortality relation derived from multi-national cohort investigations. Decomposition analyses were conducted to dissociate net shift in NO2-related deaths between 2010 and 2020 into four primary contributing factors. RESULTS: A total of 14313 deaths were recorded during follow-up of approximately 100 hundred person-years (median 3.6 years). We observed an approximately linear relationship (nonlinear P = 0.882) of NO2 exposure with all-cause death across a broad range from 6.6 to 95.7 µg/m3. Every 10-µg/m3 rise in yearly average NO2 concentration was linked to a hazard ratio (HR) of 1.045 (95% confidence interval [CI]: 1.031-1.059). In the updated meta-analysis of this study and 9 existing cohorts, we estimated a pooled HR of 1.043 (95% CI: 1.023-1.063) for each 10-µg/m3 growth in NO2. Reaching a 10-µg/m3 counterfactual target of NO2 concentration in China could avoid 0.33 (95% empirical CI: 0.19-0.49) million premature deaths and an LLE of 0.40 (95% empirical CI: 0.23-0.59) years in 2010, which greatly dropped to 0.24 (95% empirical CI: 0.14-0.36) million deaths and 0.21 (95% empirical CI: 0.12-0.31) years of LLE in 2020. The net fall in NO2-attributable deaths (-26.8%) between 2010 and 2020 was primarily driven by the declines in both NO2 concentration (-41.6%) and mortality rate (-27.1%) under population growth (+41.0%) and age structure transition (+0.9%). CONCLUSIONS: Our findings provide national evidence for increased risk of premature death and loss of life expectancy attributed to later-life NO2 exposure among the elderly in China. In an accelerated aging society, strengthened clean air actions should be formulated to minimize the health burden and regional inequality in NO2-attributable mortality.


Subject(s)
Air Pollutants , Air Pollution , Environmental Exposure , Life Expectancy , Nitrogen Dioxide , Humans , Aged , Nitrogen Dioxide/analysis , China/epidemiology , Male , Air Pollutants/adverse effects , Air Pollutants/analysis , Female , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Aged, 80 and over , Air Pollution/adverse effects , Cohort Studies , Longitudinal Studies , Proportional Hazards Models , Mortality/trends , East Asian People
19.
Int Immunopharmacol ; 137: 112447, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38909497

ABSTRACT

CD8+ tumor-infiltrating lymphocytes (TILs) exhaustion is a major barrier to effective tumor control in diffuse large B-cell lymphoma (DLBCL) and may consist of heterogeneous populations with different functional states. We profiled the CD8+TILs exhaustion heterogeneity and explored its clinical significance as well as the underlying mechanism through single-cell RNA sequencing (n = 7), bulk RNA sequencing (n = 3300), immunohistochemistry (n = 116), and reverse transcription-quantitative polymerase chain reaction (n = 95), and somatic mutation data (n = 48). Our results demonstrated that exhausted CD8+TILs in DLBCL were composed of progenitor and terminal states characterized by CCL5 and TUBA1B, respectively. High terminally exhausted CD8+TILs indicated an immunosuppressive tumor microenvironment, activated B-cell-like subtype, inferior prognosis, and poor response to immune checkpoint blockade therapy in DLBCL. Our study further demonstrated that the CD39/A2AR-related signaling may be the potential pathway that promoted the transition of progenitor toward terminally exhausted CD8+TILs in DLBCL. Furthermore, the CD39/A2AR-related pathway in DLBCL may be regulated by BATF and STAT3 in exhausted CD8+TILs, and MYD88 mutation in tumor cells. Our study highlights CD8+TILs exhaustion heterogeneity and its possible regulatory mechanism provides a novel prognostic indicator and can facilitate the optimization of individualized immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Lymphocytes, Tumor-Infiltrating , Lymphoma, Large B-Cell, Diffuse , Tumor Microenvironment , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Humans , Lymphocytes, Tumor-Infiltrating/immunology , CD8-Positive T-Lymphocytes/immunology , Tumor Microenvironment/immunology , Mutation , Prognosis , Signal Transduction , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Female
20.
Brain ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940350

ABSTRACT

In frontotemporal lobar degeneration (FTLD), pathological protein aggregation in specific brain regions is associated with declines in human-specialized social-emotional and language functions. In most patients, disease protein aggregates contain either TDP-43 (FTLD-TDP) or tau (FTLD-tau). Here, we explored whether FTLD-associated regional degeneration patterns relate to regional gene expression of human accelerated regions (HARs), conserved sequences that have undergone positive selection during recent human evolution. To this end, we used structural neuroimaging from patients with FTLD and human brain regional transcriptomic data from controls to identify genes expressed in FTLD-targeted brain regions. We then integrated primate comparative genomic data to test our hypothesis that FTLD targets brain regions linked to expression levels of recently evolved genes. In addition, we asked whether genes whose expression correlates with FTLD atrophy are enriched for genes that undergo cryptic splicing when TDP-43 function is impaired. We found that FTLD-TDP and FTLD-tau subtypes target brain regions with overlapping and distinct gene expression correlates, highlighting many genes linked to neuromodulatory functions. FTLD atrophy-correlated genes were strongly enriched for HARs. Atrophy-correlated genes in FTLD-TDP showed greater overlap with TDP-43 cryptic splicing genes and genes with more numerous TDP-43 binding sites compared with atrophy-correlated genes in FTLD-tau. Cryptic splicing genes were enriched for HAR genes, and vice versa, but this effect was due to the confounding influence of gene length. Analyses performed at the individual-patient level revealed that the expression of HAR genes and cryptically spliced genes within putative regions of disease onset differed across FTLD-TDP subtypes.

SELECTION OF CITATIONS
SEARCH DETAIL
...