Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 615
1.
J Agric Food Chem ; 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38830127

2-(2-Phenylethyl)chromones (PECs) are the primary constituents responsible for the promising pharmacological activities and unique fragrance of agarwood. However, the O-methyltransferases (OMTs) involved in the formation of diverse methylated PECs have not been reported. In this study, we identified one Mg2+-dependent caffeoyl-CoA-OMT subfamily enzyme (AsOMT1) and three caffeic acid-OMT subfamily enzymes (AsOMT2-4) from NaCl-treated Aquilaria sinensis calli. AsOMT1 not only converts caffeoyl-CoA to feruloyl-CoA but also performs nonregioselective methylation at either the 6-OH or 7-OH position of 6,7-dihydroxy-PEC. On the other hand, AsOMT2-4 preferentially utilizes PECs as substrates to produce structurally diverse methylated PECs. Additionally, AsOMT2-4 also accepts nonPEC-type substrates such as caffeic acid and apigenin to generate methylated products. Protein structure prediction and site-directed mutagenesis revealed that residues of L313 and I318 in AsOMT3, as well as S292 and F313 in AsOMT4 determine the distinct regioselectivity of these two OMTs toward apigenin. These findings provide important biochemical evidence of the remarkable structural diversity of PECs in agarwood.

2.
Aesthetic Plast Surg ; 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38691175

We read the recently published article "Effect of Ropivacaine Intercostal Nerve Block Combined with Patient Controlled Intravenous Analgesia on Postoperative Analgesia after Breast Augmentation" by You et al. We have noticed several issues in the methods and results of this study and would appreciate the responses from the authors. We question several aspects, opioid-sparing effect, sufentanil consumption, sample size evaluation, exclusion reasons, and side effects.

3.
iScience ; 27(5): 109763, 2024 May 17.
Article En | MEDLINE | ID: mdl-38706860

Many Gram-negative bacteria use type Ⅲ secretion system (T3SS) to inject effector proteins and subvert host signaling pathways, facilitating the growth, survival, and virulence. Notably, some bacteria harbor multiple distinct T3SSs with different functions. An extraordinary T3SS, the Escherichia coli Type III Secretion System 2 (ETT2), is widespread among Escherichia coli (E. coli) strains. Since many ETT2 carry genetic mutations or deletions, it is thought to be nonfunctional. However, increasing studies highlight ETT2 contributes to E. coli pathogenesis. Here, we present a comprehensive overview of genetic distribution and characterization of ETT2. Subsequently, we outline its functional potential, contending that an intact ETT2 may retain the capacity to translocate effector proteins and manipulate the host's innate immune response. Given the potential zoonotic implications associated with ETT2-carrying bacteria, further investigations into the structure, function and regulation of ETT2 are imperative for comprehensive understanding of E. coli pathogenicity and the development of effective control strategies.

4.
Front Immunol ; 15: 1366101, 2024.
Article En | MEDLINE | ID: mdl-38707905

We report here the case of a 50-year-old man who was first diagnosed with myelodysplastic syndrome with excess blasts-2 (MDS-EB-2) and underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) in 2019, resulting in complete remission. However, he was diagnosed in 2021 with several autoimmune disorders, including autoimmune hepatitis (AIH), Hashimoto's thyroiditis (HT), and autoimmune hemolytic anemia (AIHA). This is referred as multiple autoimmune syndrome (MAS), which is a rare occurrence after allo-HSCT, as previously noted in the literature. Despite being treated with glucocorticoids, cyclosporine A, and other medications, the patient did not fully recover. To address the glucocorticoid-refractory MAS, a four-week course of rituximab (RTX) at a weekly dose of 100mg was administered, which significantly improved the patient's condition. Thus, this case report underscores the importance of implementing alternative treatments in patients with post-transplant autoimmune diseases, who are glucocorticoid-refractory or glucocorticoid-dependent, and highlights the effectiveness of RTX as second-line therapy.


Autoimmune Diseases , Glucocorticoids , Hematopoietic Stem Cell Transplantation , Transplantation, Homologous , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Male , Middle Aged , Glucocorticoids/therapeutic use , Autoimmune Diseases/etiology , Autoimmune Diseases/therapy , Rituximab/therapeutic use , Anemia, Hemolytic, Autoimmune/etiology , Anemia, Hemolytic, Autoimmune/therapy , Anemia, Hemolytic, Autoimmune/drug therapy , Drug Resistance
5.
Water Sci Technol ; 89(9): 2416-2428, 2024 May.
Article En | MEDLINE | ID: mdl-38747957

The connectivity of urban river networks plays an important role in cities in many aspects, such as urban water safety, water quality (WQ), and aquatic ecological balance. This study focuses on the river network and the Majiawan Wetland in the Chaoyang District of Beijing by establishing a two-dimensional hydrological WQ model employing various water allocation schemes between the river network and the wetland. Water circulation and WQ are the main indexes, and the effects of different scenarios on improving water circulation and WQ are simulated and compared. This study demonstrates that the addition of water replenishment at the intersection of river network and internal slow-water zones of the wetland (Scheme 2) has greater effectiveness in improving both hydrology and WQ compared to two other schemes. The water area of the Majiawan Wetland has expanded, and water velocity has increased. Using chemical oxygen demand, total nitrogen, and total phosphorus as the index values for determining the water class, the WQ of about 20% of the wetland area was reached Water Class II (domestic drinking water), with Water Class III (general industrial water) accounting for the other 80%. This study provides valuable evaluation and reference for similar areas of urban river network connectivity.


Rivers , Water Quality , Wetlands , Rivers/chemistry , Cities , Models, Theoretical , China , Computer Simulation
6.
Plants (Basel) ; 13(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732469

During the period preceding the vegetation growing season (GS), temperature emerges as the pivotal factor determining phenology in northern terrestrial ecosystems. Despite extensive research on the impact of daily mean temperature (Tmean) during the preseason period, the influence of diurnal temperature range (DTR) on vegetation photosynthetic phenology (i.e., the impact of the plant photosynthetic cycle on seasonal time scale) has largely been neglected. Using a long-term vegetation photosynthetic phenology dataset and historical climate data, we examine vegetation photosynthetic phenology dynamics and responses to climate change across the mid-high latitudes of the Northern Hemisphere from 2001 to 2020. Our data reveal an advancing trend in the start of the GS (SOS) by -0.15 days per year (days yr-1), affecting 72.1% of the studied area. This is particularly pronounced in western Canada, Alaska, eastern Asia, and latitudes north of 60°N. Conversely, the end of the GS (EOS) displays a delaying trend of 0.17 days yr-1, impacting 62.4% of the studied area, especially northern North America and northern Eurasia. The collective influence of an earlier SOS and a delayed EOS has resulted in the notably prolonged length of the GS (LOS) by 0.32 days yr-1 in the last two decades, affecting 70.9% of the studied area, with Eurasia and western North America being particularly noteworthy. Partial correlation coefficients of the SOS with preseason Tmean, DTR, and accumulated precipitation exhibited negative values in 98.4%, 93.0%, and 39.2% of the study area, respectively. However, there were distinct regional variations in the influence of climate factors on the EOS. The partial correlation coefficients of the EOS with preseason Tmean, DTR, and precipitation were positive in 58.6%, 50.1%, and 36.3% of the region, respectively. Our findings unveil the intricate mechanisms influencing vegetation photosynthetic phenology, holding crucial significance in understanding the dynamics of carbon sequestration within terrestrial ecosystems amidst climate change.

7.
Phytomedicine ; 130: 155715, 2024 May 10.
Article En | MEDLINE | ID: mdl-38788399

BACKGROUND: Pulmonary fibrosis (PF) is an end-stage change in many interstitial lung diseases, whereas no proven effective anti-pulmonary fibrotic treatments. Forsythoside A (FA) derived from Forsythia suspensa (Thunb.) Vahl, has been found to possess lung-protective effect. However, studies on its anti-pulmonary fibrosis effect are limited and its mechanism of action remains unknown. PURPOSE: This study aimed to explore the underlying mechanism of FA on PF. METHODS: Male C57BL/6 mice were randomized into normal (CON), model (BLM), pirfenidone (PFD), low- and high-dose FA (FA-L, FA-H, respectively). Except for the CON group, which was injected with the same dose of saline, the model of PF was established by intratracheal instillation of BLM, during which the survival rate and body weight changes of the mice were measured. The lung histopathology was evaluated by Hematoxylin-eosin, Sirius red, and Masson staining. Transcriptome analysis was performed to screen for the differential genes associated with the role of FA in PF. Differential genes in normal and pulmonary fibrosis patients with the GSE2052 dataset were analyzed in the GEO database. The levels of CTGF, α-SMA, MMP-8 in lung and TNF-α in bronchoalveolar lavage fluid (BALF) were detected by ELISA. The levels of HYP in lungs were detected by digestion. The mRNA and protein levels of MMP-7, E-cadherin, CD31, α-SMA, TGF-ß1, IL-6, ß-catenin, ZO-1, PTPRB, E-cadherin, and vimentin in lungs were detected by RT-qPCR and Western blot. The expression of CD31, α-SMA, TGF-ß1 and ZO-1 were detected by immunofluorescence. TGF-ß1-stimulated HFL1 cells and human umbilical vein endothelial cells (HUVECs) were used in an attempt to explore the possible role of protein tyrosine phosphatase receptor type B (PTPRB) involved in FA-induced improvement of PF. RESULTS: The results showed that FA could improve the survival rate and body weight of PF mice. FA could alleviate the symptoms of alveolar wall thickening, inflammatory cell infiltration, blue collagen fiber deposition, collagen fiber type Ⅰ and type Ⅲ in mice with PF. In addition, FA could reduce the levels of HYP, CTGF, α-SMA, TGF-ß1, TNF-α, ß-catenin and MMP8, and regulate the expression levels of CD31, ZO-1, PTPRB and E-cadherin in lung of mice with PF, inhibiting endothelial-to-mesenchymal transition (EndMT) and fibroblasts proliferation. In the GSE2052 dataset, the expression level of PTPRB is reduced in lung tissue from PF patients, and results from transcriptome sequencing indicate that PTPRB expression is also reduced in PF mice. In addition, the effect of FA on TGF-ß1-induced HFL1 or HUVECs cells could be attenuated by the inhibitor of PTPRB, suggesting that the effect of FA on PF is related to PTPRB. CONCLUSION: This study demonstrated that FA could ameliorate PF by inhibiting lung fibroblast proliferation and EndMT, and that PTPRB might be a target of FA to ameliorate PF, which provided evidence to support FA as a candidate phytochemical for PF.

8.
Int J Mol Sci ; 25(10)2024 May 20.
Article En | MEDLINE | ID: mdl-38791591

Multidrug resistance (MDR) is frequently induced after long-term exposure to reduce the therapeutic effect of chemotherapeutic drugs, which is always associated with the overexpression of efflux proteins, such as P-glycoprotein (P-gp). Nano-delivery technology can be used as an efficient strategy to overcome tumor MDR. In this study, mesoporous silica nanoparticles (MSNs) were synthesized and linked with a disulfide bond and then coated with lipid bilayers. The functionalized shell/core delivery systems (HT-LMSNs-SS@DOX) were developed by loading drugs inside the pores of MSNs and conjugating with D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and hyaluronic acid (HA) on the outer lipid surface. HT-LMSNs-SS and other carriers were characterized and assessed in terms of various characteristics. HT-LMSNs-SS@DOX exhibited a dual pH/reduction responsive drug release. The results also showed that modified LMSNs had good dispersity, biocompatibility, and drug-loading capacity. In vitro experiment results demonstrated that HT-LMSNs-SS were internalized by cells and mainly by clathrin-mediated endocytosis, with higher uptake efficiency than other carriers. Furthermore, HT-LMSNs-SS@DOX could effectively inhibit the expression of P-gp, increase the apoptosis ratios of MCF-7/ADR cells, and arrest cell cycle at the G0/G1 phase, with enhanced ability to induce excessive reactive oxygen species (ROS) production in cells. In tumor-bearing model mice, HT-LMSNs-SS@DOX similarly exhibited the highest inhibition activity against tumor growth, with good biosafety, among all of the treatment groups. Therefore, the nano-delivery systems developed herein achieve enhanced efficacy towards resistant tumors through targeted delivery and redox-responsive drug release, with broad application prospects.


Doxorubicin , Drug Resistance, Neoplasm , Lipid Bilayers , Nanoparticles , Oxidation-Reduction , Silicon Dioxide , Silicon Dioxide/chemistry , Humans , Animals , Drug Resistance, Neoplasm/drug effects , Nanoparticles/chemistry , Mice , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Lipid Bilayers/chemistry , Drug Carriers/chemistry , Drug Liberation , Drug Delivery Systems , Apoptosis/drug effects , Porosity , Female , MCF-7 Cells , Xenograft Model Antitumor Assays , Cell Line, Tumor , Hyaluronic Acid/chemistry , Drug Resistance, Multiple/drug effects , Mice, Nude
9.
Clin Transl Med ; 14(5): e1701, 2024 May.
Article En | MEDLINE | ID: mdl-38778448

BACKGROUND: Mucinous colorectal adenocarcinoma (MCA) is a distinct subtype of colorectal cancer (CRC) with the most aggressive pattern, but effective treatment of MCA remains a challenge due to its vague pathological characteristics. An in-depth understanding of transcriptional dynamics at the cellular level is critical for developing specialised MCA treatment strategies. METHODS: We integrated single-cell RNA sequencing and spatial transcriptomics data to systematically profile the MCA tumor microenvironment (TME), particularly the interactome of stromal and immune cells. In addition, a three-dimensional bioprinting technique, canonical ex vivo co-culture system, and immunofluorescence staining were further applied to validate the cellular communication networks within the TME. RESULTS: This study identified the crucial intercellular interactions that engaged in MCA pathogenesis. We found the increased infiltration of FGF7+/THBS1+ myofibroblasts in MCA tissues with decreased expression of genes associated with leukocyte-mediated immunity and T cell activation, suggesting a crucial role of these cells in regulating the immunosuppressive TME. In addition, MS4A4A+ macrophages that exhibit M2-phenotype were enriched in the tumoral niche and high expression of MS4A4A+ was associated with poor prognosis in the cohort data. The ligand-receptor-based intercellular communication analysis revealed the tight interaction of MUC1+ malignant cells and ZEB1+ endothelial cells, providing mechanistic information for MCA angiogenesis and molecular targets for subsequent translational applications. CONCLUSIONS: Our study provides novel insights into communications among tumour cells with stromal and immune cells that are significantly enriched in the TME during MCA progression, presenting potential prognostic biomarkers and therapeutic strategies for MCA. KEY POINTS: Tumour microenvironment profiling of MCA is developed. MUC1+ tumour cells interplay with FGF7+/THBS1+ myofibroblasts to promote MCA development. MS4A4A+ macrophages exhibit M2 phenotype in MCA. ZEB1+ endotheliocytes engage in EndMT process in MCA.


Adenocarcinoma, Mucinous , Colorectal Neoplasms , Mucin-1 , Single-Cell Analysis , Tumor Microenvironment , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Tumor Microenvironment/genetics , Single-Cell Analysis/methods , Adenocarcinoma, Mucinous/metabolism , Adenocarcinoma, Mucinous/genetics , Adenocarcinoma, Mucinous/pathology , Mucin-1/genetics , Mucin-1/metabolism , Cell Communication/genetics
10.
Open Med (Wars) ; 19(1): 20240928, 2024.
Article En | MEDLINE | ID: mdl-38584820

Background: Since the outbreak of COVID-19 in December 2019, countries around the world, including China, have been administering COVID-19 vaccines in response to the pandemic. Our center has observed that treating patients with primary immune thrombocytopenia (ITP) has become more challenging in this context. Methods: This study compared the treatment response of 25 de novo ITP patients who had received a COVID-19 vaccination (Group 1) with an equal number of de novo ITP patients randomly selected from the 2 years prior to the COVID-19 pandemic (Group 2) by using the Mann-Whitney U test and Fisher's exact. Results: Patients in both groups had predominantly female gender with similar age and baseline platelet counts. However, on Day 3, the median platelets were 22 and 49 × 109/L, and on Day 7, they were 74 and 159 × 109/L, respectively (P < 0.05). Compared to Group 2, Group 1 showed a suboptimal short-term response to glucocorticoid monotherapy, with a higher proportion of patients requiring combination therapy with other drugs including intravenous immunoglobulin, thrombopoietin receptor agonists, and rituximab. After subgroup analysis, a significant difference was observed in the proportion of patients requiring second-line therapy between the two groups. Conclusions: Our study suggests that COVID-19 vaccination may lead to a lower response rate to first-line treatment in de novo ITP patients. Nevertheless, it is crucial to acknowledge the inherent limitations in this conclusion. Further studies are needed to confirm these findings and investigate the underlying mechanisms.

11.
Article En | MEDLINE | ID: mdl-38584532

INTRODUCTION: Chronic inflammation is one of the causative factors for tumorigenesis. Gastrodin is a main active ingredient isolated from Gastrodia elata Blume, a famous medicinal herb with a long edible history. AIM: This study aimed to explore the effects of gastrodin on colitis-associated carcinogenesis (CRC) in mice and to elucidate its potential molecular mechanisms. METHODS: Balb/c mice were induced with azoxymethane (AOM) and dextran sulfate sodium (DSS) for 12 weeks. Gastrodin (50 mg/kg) was administered via oral gavage three times per week until the end of the experiment. Disease indexes, including body weight, bloody diarrhea, colon length, histopathological score, and tumor size, were measured. Tumor cell proliferation was evaluated by BrdU incorporation assay and tumor cell cytotoxicity was assessed by cell counting kit (CCK-8). The expression levels of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-ΚB) signaling molecules, NF-ΚB luciferase, and pro-inflammatory cytokines were determined by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), immunoblotting, immunohistochemistry (IHC), enzyme-linked immunosorbent assay (ELISA), or reporter gene assays. The binding affinity between gastrodin and myeloid differentiation protein-2 (MD2) was analyzed by molecular docking and cellular thermal shift assay (CETSA). RESULTS: Gastrodin administration was demonstrated to mitigate various CRC-related symptoms in mice, including weight loss, diarrhea, and tissue abnormalities. Notably, gastrodin suppressed tumor cell growth during colitis- associated tumorigenesis, resulting in fewer and smaller adenomas in the colon. Unlike irinotecan, a broadspectrum antitumor drug, gastrodin did not exhibit apparent cytotoxicity in various colorectal adenocarcinoma cell lines. Additionally, gastrodin downregulated TLR4/NF-ΚB signaling molecules and pro-inflammatory mediators in mice and macrophages. Molecular docking and CETSA experiments suggested that gastrodin binds to the MD2 protein, potentially interfering with the recognition of lipopolysaccharide (LPS) by TLR4, leading to NF-ΚB pathway inhibition. CONCLUSION: This study provides evidence for the first time that gastrodin attenuated colitis and prevented colitisrelated carcinogenesis in mice, at least partially, by diminishing tumor-promoting cytokines through the interruption of TLR4/MD2/NF-ΚB signaling transduction.

12.
Sci Rep ; 14(1): 9703, 2024 04 27.
Article En | MEDLINE | ID: mdl-38678070

Falls can cause serious health problems in the elderly. China is gradually entering a moderately aging society. In rural areas of China, the elderly are at a higher risk of falling. This study aims to explore and analyze the factors affecting the fall risk of elderly people in rural areas of China, and provide theoretical basis for reducing the fall risk of elderly people. M County, Anhui Province, China was selected as the survey site by the typical field sampling method, and the elderly people in rural areas were selected as the research objects. A total of 1187 people were investigated. Mann-Whitney U test and Kruskal-Wallis H test were used for univariate analysis, and multiple linear regression was used for multivariate analysis. Chronic diseases, multimorbidity, daily living ability, mental health, working status and family doctors are the factors that influence falls among elderly people in rural areas of China (P < 0.05, Adjusted R2 = 0.395). The falls risk of the elderly in rural areas of China is influenced by multiple factors. Therefore, comprehensive measures should be taken to reduce the fall risk by comprehensively evaluating the influencing factors.


Accidental Falls , Rural Population , Humans , Accidental Falls/statistics & numerical data , Accidental Falls/prevention & control , Aged , China/epidemiology , Female , Male , Rural Population/statistics & numerical data , Risk Factors , Aged, 80 and over , Middle Aged , Activities of Daily Living
13.
Small ; : e2400963, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38686696

Biomolecule-functionalized nanoparticles represent a type of promising biomaterials in biomedical applications owing to their excellent biocompatibility and versatility. DNA-based reactions on nanoparticles have enabled emerging applications including intelligent biosensors, drug delivery, and biomimetic devices. Among the reactions, strand hybridization is the critical step to control the sensitivity and specificity of biosensing, and the efficiency of drug delivery. However, a comprehensive understanding of DNA hybridization on nanoparticles is still lacking, which may differ from the process in homogeneous solutions. To address this limitation, coarse-grained model-based molecular dynamic simulation is harnessed to disclose the critical factors involved in intermolecular hybridization. Based on simulation guidance, DNA walker-based smart theranostic platform (DWTP) based on "on-particle" hybridization is developed, showing excellent consistency with simulation. DWTP is successfully applied for highly sensitive miRNA 21 detection and tumor-specific miRNA 21 imaging, driven by tumor-endogenous APE 1 enzyme. It enables the precise release of antisense oligonucleotide triggered by tumor-endogenous dual-switch miRNA 21 and APE 1, facilitating effective gene silencing therapy with high biosafety. The simulation of "on-particle" DNA hybridization has improved the corresponding biosensing performance and the release efficiency of therapeutic agents, representing a conceptually new approach for DNA-based device design.

14.
Front Immunol ; 15: 1357072, 2024.
Article En | MEDLINE | ID: mdl-38638435

Introduction: Clostridium perfringens α toxin is a main virulence factor responsible for gut damage in animals. Arginine is a functional amino acid exhibiting significant immunoregulatory activities. However, the effects and immunoregulatory mechanisms of arginine supplementation on α toxin-induced intestinal injury remain unclear. Methods: In vivo, 256 male Arbor Acres chickens were randomly assigned to a 2×2 factorial arrangement, involving diet treatments (with or without 0.3% arginine supplementation) and immunological stress (with or without α toxin challenge). In vitro, IEC-6 cells were treated with or without arginine in the presence or absence of α toxin. Moreover, IEC-6 cells were transfected with siRNA targeting mTOR and SLC38A9 to explore the underlying mechanisms. Results and discussion: The results showed that in vivo, arginine supplementation significantly alleviated the α toxin-induced growth performance impairment, decreases in serum immunoglobulin (Ig)A and IgG levels, and intestinal morphology damage. Arginine supplementation also significantly reduced the α toxin-induced increase in jejunal proinflammatory cytokines interleukin (IL)-1ß, IL-6 and IL-17 mRNA expression. Clostridium perfringens α toxin significantly decreased jejunal mechanistic target of rapamycin (mTOR) and solute carrier family 38 member 9 (SLC38A9) mRNA expression, while arginine supplementation significantly increased mTOR and SLC38A9 mRNA expression. In vitro, arginine pretreatment mitigated the α toxin-induced decrease in cell viability and the increase in cytotoxicity and apoptosis. Arginine pretreatment also alleviated the α toxin-induced upregulation of mRNA expression of inflammation-related cytokines IL-6, C-X-C motif chemokine ligand (CXCL)10, CXCL11 and transforming growth factor-ß (TGF-ß), as well as apoptosis-related genes B-cell lymphoma-2 associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), B-cell lymphoma-extra large (Bcl-XL) and cysteinyl aspartate specific proteinase 3 (Caspase-3) and the ratio of Bax to Bcl-2. Arginine pretreatment significantly increased the α toxin-induced decrease in mTOR, SLC38A9, eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1) and ribosomal protein S6 kinase (S6K) mRNA expression. Knockdown SLC38A9 and mTOR largely abrogated the positive effects of arginine pretreatment on α toxin-induced intracellular changes. Furthermore, SLC38A9 silencing abolished the increased mTOR mRNA expression caused by arginine pretreatment. In conclusion, arginine administration attenuated α toxin-induced intestinal injury in vivo and in vitro, which could be associated with the downregulation of inflammation via regulating SLC38A9/mTORC1 pathway.


Arginine , Bacterial Toxins , Calcium-Binding Proteins , Interleukin-6 , Type C Phospholipases , Animals , Male , Arginine/pharmacology , Bacterial Toxins/toxicity , bcl-2-Associated X Protein , Chickens/genetics , Inflammation , Mechanistic Target of Rapamycin Complex 1 , RNA, Messenger/genetics , TOR Serine-Threonine Kinases/metabolism , Amino Acid Transport Systems/metabolism
16.
Water Res ; 256: 121562, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38604064

Halophenylacetamides (HPAcAms) have been identified as a new group of nitrogenous aromatic disinfection byproducts (DBPs) in drinking water, but the toxicity mechanisms associated with HPAcAms remain almost completely unknown. In this work, the cytotoxicity of HPAcAms in human hepatoma (HepG2) cells was evaluated, intracellular oxidative stress/damage levels were analyzed, their binding interactions with antioxidative enzyme were explored, and a quantitative structure-activity relationship (QSAR) model was established. Results indicated that the EC50 values of HPAcAms ranged from 2353 µM to 9780 µM, and the isomeric structure as well as the type and number of halogen substitutions could obviously induce the change in the cytotoxicity of HPAcAms. Upon exposure to 2-(3,4-dichlorophenyl)acetamide (3,4-DCPAcAm), various important biomarkers linked to oxidative stress and damage, such as reactive oxygen species, 8­hydroxy-2-deoxyguanosine, and cell apoptosis, exhibited a significant increase in a dose-dependent manner. Moreover, 3,4-DCPAcAm could directly bind with Cu/Zn-superoxide dismutase and induce the alterations in the structure and activity, and the formation of complexes was predominantly influenced by the van der Waals force and hydrogen bonding. The QSAR model supported that the nucleophilic reactivity as well as the molecular compactness might be highly important in their cytotoxicity mechanisms in HepG2 cells, and 2-(2,4-dibromophenyl)acetamide and 2-(3,4-dibromophenyl)acetamide deserved particular attention in future studies due to the relatively higher predicted cytotoxicity. This study provided the first comprehensive investigation on the cytotoxicity mechanisms of HPAcAm DBPs.


Disinfection , Drinking Water , Drinking Water/chemistry , Humans , Hep G2 Cells , Quantitative Structure-Activity Relationship , Acetamides/toxicity , Acetamides/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Oxidative Stress/drug effects , Disinfectants/toxicity , Disinfectants/chemistry , Reactive Oxygen Species/metabolism
17.
J Anim Sci ; 1022024 Jan 03.
Article En | MEDLINE | ID: mdl-38651250

Immunoglobulin is an essential component of the body's defense against pathogens, aiding in the recognition and clearance of foreign antigens. Research concerning immunoglobulin gene and its diversity of expression across different breeds within the same species is relatively scarce. In this study, we employed RACE (Rapid Amplification of cDNA Ends) technology, prepared DNA libraries, performed high-throughput sequencing, and conducted related bioinformatics analysis to analyze the differences in immunoglobulin gene diversity and expression at different periods in Hy-line brown hens, Lueyang black-bone chickens, and Beijing-You chickens. The study found that the composition of chicken immunoglobulin genes is relatively simple, with both the light chain and heavy chain having a functional V gene. Additionally, the mechanisms of immunoglobulin diversity generation tended to be consistent among different breeds and periods of chickens, primarily relying on abundant junctional diversity, somatic hypermutation (SHM), and gene conversion (GCV) to compensate for the limitations of low-level V(D)J recombination. As the age increased, the junctional diversity of IgH and IgL tended to diversify and showed similar expression patterns among different breeds. In the three chicken breeds, the predominant types of mutations observed in IGHV and IGLV SHM were A to G and G to A transitions. Specifically, IGLV exhibited a preference for A to G mutations, whereas IGHV displayed a bias toward G to A mutations. The regions at the junctions between framework regions (FR) and complementarity-determining regions (CDR) and within the CDR regions themselves are typically prone to mutations. The locations of GCV events in IGLV and IGHV do not show significant differences, and replacement segments are concentrated in the central regions of FR1, CDR, and FR2. Importantly, gene conversion events are not random occurrences. Additionally, our investigation revealed that CDRH3 in chickens of diverse breeds and periods the potential for diversification through the incorporation of cysteine. This study demonstrates that the diversity of immunoglobulin expression tends to converge among Hy-line brown hens, Lueyang black-bone chickens, and Beijing-You chickens, indicating that the immunoglobulin gene expression mechanisms in different breeds of chickens do not exhibit significant differences due to selective breeding.


Immunoglobulins play a key role in the organism's defense against pathogens, and their diverse expression allows the body to generate a wide array of antibodies. This diversity serves as a critical safeguard for the immune system against various pathogens. Natural geographical variances and artificial breeding and selection can potentially lead to different immune responses in distinct populations of the same species when confronted with the same pathogen. In this study, we investigated the diversity of immunoglobulin gene expression in the natural state of different chicken breeds (Hy-line brown hens, Lueyang black-bone chickens, and Beijing-You chickens) and at different periods from the perspective of immunoglobulin gene expression mechanism. We analyzed the diversity of immunoglobulin based on the results of high-throughput sequencing by extracting Fabricius bursa RNA, RACE (Rapid Amplification of cDNA Ends) technique, and constructing DNA libraries. Our study reveals that the junctional diversity, somatic hypermutation, CDR3 diversity, and gene conversion expression of immunoglobulins in Hy-line brown hens, Lueyang black-bone chickens, and Beijing-You chickens converge during the same time period. This indicates that the immunoglobulin gene expression mechanisms in different chicken breeds do not exhibit significant variations as a result of selective breeding.


Chickens , Animals , Chickens/genetics , Chickens/immunology , Female , Immunoglobulins/genetics , Immunoglobulins/metabolism , Genes, Immunoglobulin/genetics
18.
Chin J Nat Med ; 22(4): 341-355, 2024 Apr.
Article En | MEDLINE | ID: mdl-38658097

Rheumatoid arthritis (RA) is a chronic autoimmune disorder marked by persistent synovial inflammation and joint degradation, posing challenges in the development of effective treatments. Nuciferine, an alkaloid found in lotus leaf, has shown promising anti-inflammatory and anti-tumor effects, yet its efficacy in RA treatment remains unexplored. This study investigated the antiproliferative effects of nuciferine on the MH7A cell line, a human RA-derived fibroblast-like synoviocyte, revealing its ability to inhibit cell proliferation, promote apoptosis, induce apoptosis, and cause G1/S phase arrest. Additionally, nuciferine significantly reduced the migration and invasion capabilities of MH7A cells. The therapeutic potential of nuciferine was further evaluated in a collagen-induced arthritis (CIA) rat model, where it markedly alleviated joint swelling, synovial hyperplasia, cartilage injury, and inflammatory infiltration. Nuciferine also improved collagen-induced bone erosion, decreased pro-inflammatory cytokines and serum immunoglobulins (IgG, IgG1, IgG2a), and restored the balance between T helper (Th) 17 and regulatory T cells in the spleen of CIA rats. These results indicate that nuciferine may offer therapeutic advantages for RA by decreasing the proliferation and invasiveness of FLS cells and correcting the Th17/Treg cell imbalance in CIA rats.


Aporphines , Cell Proliferation , Synoviocytes , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Cell Proliferation/drug effects , Synoviocytes/drug effects , Rats , Humans , Th17 Cells/drug effects , Th17 Cells/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Aporphines/pharmacology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/immunology , Male , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Fibroblasts/drug effects , Collagen , Apoptosis/drug effects , Cell Line
19.
J Neurooncol ; 167(2): 275-283, 2024 Apr.
Article En | MEDLINE | ID: mdl-38526757

BACKGROUND AND PURPOSE: We report outcomes following spine stereotactic body radiotherapy (SBRT) in metastatic non-small cell lung cancer (NSCLC) and the significance of programmed death-ligand 1 (PD-L1) status, epidermal growth factor receptor (EGFR) mutation and timing of immune check point inhibitors (ICI) on local failure (LF). MATERIALS AND METHODS: 165 patients and 389 spinal segments were retrospectively reviewed from 2009 to 2021. Baseline patient characteristics, treatment and outcomes were abstracted. Primary endpoint was LF and secondary, overall survival (OS) and vertebral compression fracture (VCF). Multivariable analysis (MVA) evaluated factors predictive of LF and VCF. RESULTS: The median follow-up and OS were: 13.0 months (range, 0.5-95.3 months) and 18.4 months (95% CI 11.4-24.6). 52.1% were male and 76.4% had adenocarcinoma. Of the 389 segments, 30.3% harboured an EGFR mutation and 17.0% were PD-L1 ≥ 50%. The 24 months LF rate in PD-L1 ≥ 50% vs PD-L1 < 50% was 10.7% vs. 38.0%, and in EGFR-positive vs. negative was 18.1% vs. 30.0%. On MVA, PD-L1 status of ≥ 50% (HR 0.32, 95% CI 0.15-0.69, p = 0.004) significantly predicted for lower LF compared to PD-L1 < 50%. Lower LF trend was seen with ICI administration peri and post SBRT (HR 0.41, 95% CI 0.16-1.05, p = 0.062). On MVA, polymetastatic disease (HR 3.28, 95% CI 1.84-5.85, p < 0.0001) and ECOG ≥ 2 (HR 1.87, 95% CI 1.16-3.02, p = 0.011) significantly predicted for worse OS and absence of baseline VCF predicted for lower VCF rate (HR 0.20, 95% CI 0.10-0.39, p < 0.0001). CONCLUSION: We report a significant association of PD-L1 ≥ 50% status on improved LC rates from spine SBRT in NSCLC patients.


Carcinoma, Non-Small-Cell Lung , Fractures, Compression , Lung Neoplasms , Radiosurgery , Spinal Fractures , Spinal Neoplasms , Humans , Male , Female , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , Lung Neoplasms/pathology , B7-H1 Antigen , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/radiotherapy , Follow-Up Studies , Retrospective Studies , Spinal Neoplasms/genetics , Spinal Neoplasms/radiotherapy , Spinal Neoplasms/secondary , ErbB Receptors/genetics
20.
Food Chem X ; 22: 101257, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38495458

In this study, high-throughput sequencing and metabolomics analysis were conducted to analyze the microbial and metabolites of dry-cured Sanchuan ham, Laowo ham, Nuodeng ham, and Heqing ham that have fermented for two years produced from western Yunnan China. Results showed that at the genus level, the dominant bacteria in the four types of ham were Halomonas and Staphylococcus, while the dominant fungi were Aspergillus and Yamadazyma. A total 422 different metabolites were identified in four types of ham, mainly amino acids, peptides, fatty acids, and their structural analogs, which were involved in pantothenate and coenzyme A biosynthesis, caffeine, and tyrosine metabolism. The dominant microorganisms of the four types of ham were mainly related to the metabolism of fatty acids and amino acids. This research enhances the identification degree of these four types of dry-cured ham and provides a theoretical basis for developing innovative and distinctive ham products.

...